No.01 正交不平衡补偿 GSOP算法 有MATLAB和Python代码实现

2023-10-30 20:30

本文主要是介绍No.01 正交不平衡补偿 GSOP算法 有MATLAB和Python代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理解难点:

  1. 区分不平衡和不正交的概念。
  2. 正交归一化并非绑定在一起,正交是必须要处理的,至于是否归一化随性而定。
  3. 建议将 IQ 不平衡的原因与导致的现象之间的数学推导熟悉一遍,有助于理解。

正交不平衡的原因和表象

在理想情况下,相干探测得到的 I 路和 Q 路信号是完全正交的,但实际实验中有多种原因会造成 IQ 两路不平衡,从而破坏 IQ 两路的正交性,导致系统性能恶化,还会影响后续 DSP 模块正常工作。造成此现象的原因主要是调制器和接收机的不理想。

调制器的不理想主要体现在,调制器 IQ 两路偏置点设置的不正确,3dB耦合器分光比不对称,90°正交偏置电压设置不准确。接收机的不理想主要体现在,3dB 耦合器分光比不对称,90°光混频器的不完美,光电二极管响应率不匹配。除了这些主要原因外,还有一些次要因素。如,输入调制器的两臂的 IQ 信号由于电放大器的工艺问题,导致驱动幅度不一样。以及偏振控制的失调等等。这些因素并没有那么重要,并且也可以通过 IQ 不平衡补偿一并处理掉,就不一一列举了。

由上述多种原因联合作用,最终体现在信号上的现象表现为三个方面:

  1. I 路 或 Q 路的幅值分布不均匀
  2. I 路 或 Q 路的幅值分布中心点不统一
  3. I 路与 Q 路信号不正交

由此可以知道,所谓 IQ 不平衡与不正交是包含与被包含的关系。上述幅值中心点和分配不均都可以通过判决门限的选定来解决。比较麻烦的是不正交的问题,无论问题出在收端还是发端,都会使得 IQ 两路的信息相互耦合。

Gram-Schmidt 正交化过程

Gram-Schmidt 正交化过程 (Gram-Schmidt Orthogonalization Procedure, GSOP) 是解决 IQ 不平衡的经典算法。
在这里插入图片描述

理想情况下,经上图平衡探测相干接收后输出的信号为:
{ I I ( t ) ∝ R e { E s E l o ∗ } I Q ( t ) ∝ I m { E s E l o ∗ } \left\{ \begin{aligned} & I_I(t)\propto Re\{E_sE^*_{lo}\} \\ & I_Q(t)\propto Im\{E_sE^*_{lo}\} \end{aligned} \right. {II(t)Re{EsElo}IQ(t)Im{EsElo}
GSOP 将 IQ 不平衡问题建模为:
{ I I ( t ) ∝ R e { E s E l o ∗ } I Q ( t ) ∝ α ⋅ I m { E s E l o ∗ ⋅ e j θ } \left\{ \begin{aligned} & I_I(t)\propto Re\{E_sE^*_{lo}\} \\ & I_Q(t)\propto \alpha \cdot Im\{E_sE^*_{lo}\cdot e^{j\theta}\} \end{aligned} \right. {II(t)Re{EsElo}IQ(t)αIm{EsEloejθ}

GSOP 算法认为 Q 路混入的 I 路的信息。如果你做过 IQ 不平衡原因与现象之间具体的数学推导,就可以看出这种建模方式是值得改进的。

我要做的工作是恢复采样信号 I I ( k ) = { I I ( 1 ) , I I ( 2 ) , . . . , I I ( n ) } I_I(k)=\{I_I(1), I_I(2), ..., I_I(n)\} II(k)={II(1),II(2),...,II(n)} I Q ( k ) = { I Q ( 1 ) , I Q ( 2 ) , . . . , I Q ( n ) } I_Q(k)=\{I_Q(1), I_Q(2), ..., I_Q(n)\} IQ(k)={IQ(1),IQ(2),...,IQ(n)} 的正交性,并做归一化。

从简单的例子入手,我有两个f非正交二维向量 A , B A, B A,B,几何直观能够很好理解:
在这里插入图片描述

只需要让 A 对 B 做垂线,得到的向量 C 就和 B 是正交的了。于是用 C 代替了 A 。
IQ 两路信号只不过是维度更高,原理上完全一致。

I o u t ( k ) = I I ( k ) E [ I I 2 ( k ) ] Q o u t ( k ) = I Q ( k ) − E [ I I ( k ) I Q ( k ) ] I I ( k ) E [ I I 2 ( k ) ] E [ I Q 2 ( k ) ] \begin{aligned} & I_{out}(k)=\frac{I_I(k)}{\sqrt{E[I^2_I(k)]}}\\ & Q_{out}(k)=\frac{I_Q(k)-E[I_I(k)I_Q(k)]\frac{I_I(k)}{E[I^2_I(k)]}}{\sqrt{E[I^2_Q(k)]}} \end{aligned} Iout(k)=E[II2(k)] II(k)Qout(k)=E[IQ2(k)] IQ(k)E[II(k)IQ(k)]E[II2(k)]II(k)

这里把 Q 路信号投影到了 I 路,并对功率做了归一化。

从处理方式可以看出,GSOP 算法解决了不正交的问题,但这种对不正交性的建模是不准确的。另外还通过归一化解决了信号幅度范围不相同的问题,但并没有解决幅度分配不均以及中心点设置不相同的问题。

代码实现

大家应该都用这同一个代码来实现 RSOP 算法

function output = gsop(input)
%GSOP IQ不平衡补偿算法rI = real(input);rQ = imag(input);rho = mean(rI.*rQ);PI = mean(rI.*rI);PQ = mean(rQ.*rQ);Iout = rI/(sqrt(PI));Qout0 = rQ-rho*rI/PI;Qout = Qout0/sqrt(PQ);output = Iout+1i*Qout;% scatterplot(output);
end

为什么非要自己造轮子呢?咱们用用 SymPy 库不香嘛
在这里插入图片描述

这篇关于No.01 正交不平衡补偿 GSOP算法 有MATLAB和Python代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/310400

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详