【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC

2023-10-30 17:50

本文主要是介绍【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果要对硬币进行分类,我们对硬币根据不同的尺寸重量来告诉机器它是多少面值的硬币 这种对应的机器学习即使监督学习,那么如果我们不告诉机器这是多少面额的硬币,只有尺寸和重量,这时候让机器进行分类,希望机器对不同种类的硬币分类,这种机器学习方式就是无监督学习。可以从下图看出,监督学习,根据颜色(面值)可以得出不同种类,而无监督学习也可根据所样例在的不同区域对样例进行分类。

根据聚类分组clustering: {xn} -> cluster(x)

根据密度分组density estimation{Xn}->density(x)

根据离群值分组outlier detection{Xn}-> unusual(x)

是否告诉机器硬币的面额,可以分类为监督学习,半监督学习,无监督学习(告知硬币面额的用彩色标出,未告知的用蓝色标出)

 

 总结一下学习模式的区别

 

第二个例子:罐子取弹珠问题

现在假设一个罐子里有n个弹珠,分别是绿色与橙色,那么如何得出取绿色(橙色)的概率,现在设真实概率橙色为μ,而我们目前假设从中取出一部分弹珠,得出的橙色概率为v,那么我要做的就是让v和μ尽可能的接近,

 

 这里引出新的算法  PAC:可能近似正确(probably approximately correct,PAC)学习模型

假定数据按照某概率分布P从X中随机产生,一般,D可为任意分布,并且它对学习型算法是 未知的。对于P,所要求的是它的 稳定性,即该分布不会随时间变化(不然我们就没有学习的意义了)。训练数据的由P分布随机抽取而产生x,然后x及其目标值(可以理解为y,标签)被提供给学习器
学习器在学习目标函数时考虑可能假设的集合H。
在观察了一系列训练数据后,学习器需要从假设集合H中得到最终的假设g,这是对未知的符合D分布的理想模型f的估计。
最后,我们通过精心挑选出来的假设g对X中新的数据的性能来评估训练器。

学习过程如下图所示:

Eout用来描述h和f在整个罐子里一不一样,相当于μ,表示外部样本错误率,

Ein用来描述在资料上h和f的相似度,相当于v,表示资料样本错误率

f和P都是未知的

通过Ein推论出的Eout就是算法的目的,当Ein足够小的时候,Eout也是很小的 则h与f很接近(当资料继续从P产生) 

以上是PAC 的算法思想……

 

转载于:https://www.cnblogs.com/KID-XiaoYuan/p/7209939.html

这篇关于【机器学习】从分类问题区别机器学习类型 与 初步介绍无监督学习算法 PAC的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/309612

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图