Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

2023-10-30 14:50

本文主要是介绍Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你看到文末,肯定不会失望的

这一个多月以来,相信大部分人都跟我一样:早上打开手机的第一件事是看有关疫情的最新新闻,看今日有没有新增人数,新增了多少。眼看着数据从一开始的几十发展到现在的快8W,渐渐地数据在我们眼里就只是一串数字。

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

我们从数字中、新闻报道里都可以看出它的严重性,但是,如果我们通过数字仔细观察每一个患者的经历,真实的惨烈程度总是可以超乎我们的认知。其中,微博“肺炎患者求助”超话上的求助者经历,便是这场疫情惨烈程度的一个缩影。

到底哪些人会在“微博超话”这个原本的追星聚集地来进行求助呢?他们是否都得到了帮助?从求助到获得帮助,他们都经历了什么,等了多久?

一、Python爬取

这些数据怎么来?那肯定是只能通过python爬虫来获取(前提是不要获取别的东西,否则....),具体的过程我这里就不赘述了,有需要的可以看到文末自取。

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

我们获取了微博“肺炎患者求助”超话上的1055条求助信息(时间节点:2020年2月20日23时),并且对这些求助的患者求助时的状况、是否得到救助、得到救助的时间等信息进行了进一步的数据整理,去掉重复数据后得到638条数据,来解答以上的问题。

二、怎么分析

python可以进行数据分析吗?完全可以!

其实,Python这种伪代码性质的语言入门并不难,但是深入进去就不是什么简单的事情了,而且Python语言不能加密,但是目前国内市场纯粹靠编写软件卖给客户的越来越少,网站和移动应用不需要给客户源代码,所以这个问题就是问题了。

有什么东西能和python结合呢?于是我想到了BI工具!

BI工具的话,简单上手、灵活快捷,尤其敏捷BI,是不需要代码建模的。举个例子,FineBI等敏捷自助式工具,傻瓜式的操作很适合现在的数据分析小白入手,就算是掌握了R这种编程语言,也很适合拿来做分析工具。

关于FineBI,可能很多小伙伴或多或少了解过这款BI工具,这是目前市面上应用最为广泛的自助式BI工具之一,类似于国外的Tableau等BI分析工具,但FineBI在协同配合,数据权限上,能更好的解决国内企业的情况。

  • 你可以把它视作为可视化工具,因为它里面自带几十种常用图表,以及动态效果

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

 

  • 你也可以把它作为报表工具,因为它能接入各种OA、ERP、CRM等系统数据,各种数据库简直毫无压力,不写代码不写SQL就能批量化做报表
  • 你还可以把它看作数据分析工具,其内置等常见的数据分析模型、以及各式图表,可以借助FineBI做一些探索性的分析

有了这一款工具之后,IT部门只需要将数据按照业务模块分类准备好,业务部门即可在浏览器前端通过鼠标点击拖拽操作,就能得到自己想要的数据分析结果。

三、数据可视化结果

以下所有都是为FineBI分析,我从开始做到结束,只用了3分钟的样子,自带ETL,就是这么快!

1、哪些天求助的人最多?

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

可以看到,2月4日到2月7日为这些患者集中在网上求助的时间,其中求助最多的是在2月5日。这个时间刚好跟爆发的数据相吻合。

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

新增确诊趋势

2、哪些人在微博求助?

在全国的救助力量都投入到一个地区之后,到底是哪些人会采用“微博”这个社交平台,并且在“微博超话”这个粉丝们用来追星的地方来进行救助呢?

我们对求助患者的年龄进行了统计,发现50岁以上的中老年人占了绝大多数的比例(81.9%)。

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

图片来自于网络

在微博上求助的人,更倾向于年龄大的患者。然而,年龄大的患者怎么会在微博超话上求助呢?我们对求助患者的信息进行统计,发现只有3.4%的求助信息是患者本人通过微博发出来的,有95.3%的求助信息都是别人代发的。

也就是说,这些老人因为信息不通畅、行动不方便等原因,只能由小辈帮忙发求助信息。

3、求助者多为重症患者,且带有基础疾病

他们在求助时的自身状况如何呢?我们从求助信息中提取出了这些求助者所描述的病症。

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

可以看到,“发烧”、“呼吸困难”、“咳嗽”、“乏力”、“胸闷”、“腹泻”、“呕吐”等都属于高频词汇,其中求助信息中出现“呼吸困难”症状的患者占了35.8%,有呼吸问题的患者占了48.2%。

这说明微博上的这些求助者多是危重症患者。另外,从这些患者的救助信息中可知,有21.1%的患者还带有“高血压”、“糖尿病”、“心脏病”、“冠心病”、“肾衰竭”等基础疾病。

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

4、他们等了多久?

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

从之前的察觉患病到最终获救,总共平均的时间是13天

在这13天里,患者们以及患者的家人们到底经历了什么样寻求治疗的过程,遇到了多少的碰壁最后才得到救助呢?几乎每份求助信息中的患者“病情描述”都可以告诉我们答案。我们把患者的描述制作成了词云图,里面的每一个字,都写满了沉重和无奈。

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

5、是否每位求助者都得到了帮助?

在微博上求助的效果怎么样呢?从转发效果上看,即使有40%的微博求助者,其微博的粉丝数都小于50人,甚至有21.4%的求助者是为了求助刚注册了微博的微博新人,仍然有57.2%的微博获得了超过10次以上的转发,有30%的微博获得了超过50次的转发。

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

然而,最终这些求助者是否获取到了救助,才是救助的最终意义。根据我们的统计发现,只有26.5%的求助者最终在微博上反馈得到了救助。

所以,并不是每一位微博求助者都幸运地得到了帮助。由于病情的发展,一部分患者在没有等到救助之前,便凋零了。

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

 

Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了

 

四、总结

以上便是这些微博求助者在微博上求助的经历。这些数据背后的每一位救助者,都是承受者,他们是每一位平凡普通的人,他们有的等来了救助,有的没有。

 

这篇关于Python爬取+BI分析后,微博求助患者的眼泪,全被数据看见了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/308686

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买