百川智能发布大模型Baichuan2-192K,一次可输入35万字超越Claude2

本文主要是介绍百川智能发布大模型Baichuan2-192K,一次可输入35万字超越Claude2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

10月30日,百川智能发布Baichuan2-192K大模型。其上下文窗口长度高达192K,是目前全球最长的上下文窗口。Baichuan2-192K能够处理约35万个汉字,是目前支持长上下文窗口最优秀大模型Claude2(支持100K上下文窗口,实测约8万字)的 4.4倍,更是 GPT-4(支持32K上下文窗口,实测约 2.5万字)的14倍。Baichuan2-192K不仅在上下文窗口长度上超越Claude2,在长窗口文本生成质量、长上下文理解以及长文本问答、摘要等方面的表现也全面领先Claude2。

今年9月25日,百川智能已开放了Baichuan2的API接口,正式进军企业级市场,开启商业化进程。此次Baichuan2-192K将以API调用和私有化部署的方式提供给企业用户,目前百川智能已经启动Baichuan2-192K的API内测,开放给法律、媒体、金融等行业的核心合作伙伴。

10项长文本评测7项取得SOTA,全面领先Claude2

上下文窗口长度是大模型的核心技术之一,通过更大的上下文窗口,模型能够结合更多上下文内容获得更丰富的语义信息,更好的捕捉上下文的相关性、消除歧义,进而更加准确、流畅的生成内容,提升模型能力。

Baichuan2-192K在Dureader、NarrativeQA、LSHT、TriviaQA等10项中英文长文本问答、摘要的评测集上表现优异,有7项取得SOTA,显著超过其他长窗口模型。

此外,LongEval的评测结果显示,在窗口长度超过100K后Baichuan2-192K依然能够保持非常强劲的性能,而其他开源或者商用模型在窗口增长后效果都出现了近乎直线下降的情况。Claude2也不例外,在窗口长度超过80K后整体效果下降非常严重。由此可见,Baichuan2-192K的长窗口内容记忆和理解能力大幅领先其他模型。

LongEval是加州大学伯克利分校联合其他高校发布的针对长窗口模型的评测榜单,主要用来衡量模型对长窗口内容的记忆和理解能力,是业内公认的长上下文窗口理解权威评测榜单)

动态采样的位置编码优化,4D并行的分布式方案,同步提升窗口长度和模型性能

扩大上下文窗口能有效提升大模型性能是人工智能行业的共识,但是超长上下文窗口意味着更高的算力需求和更大的显存压力。目前,业内有很多提升上下文窗口长度的方式,包括滑动窗口、降采样、小模型等。这些方式虽然能提升上下文窗口长度,但对模型性能均有不同程度的损害,换言之都是通过牺牲模型其他方面的性能来换取更长的上下文窗口。

而本次百川发布的Baichuan2-192K通过算法和工程的极致优化,实现了窗口长度和模型性能之间的平衡,做到了窗口长度和模型性能的同步提升。

算法方面,百川智能提出了一种针对RoPE和ALiBi动态位置编码的外推方案,该方案能够对不同长度的ALiBi位置编码进行不同程度的Attention-mask动态内插,在保证分辨率的同时增强了模型对长序列依赖的建模能力。在长文本困惑度标准评测数据 PG-19上,当窗口长度扩大,Baichuan2-192K的序列建模能力持续增强。

PG-19DeepMind发布的语言建模基准数据集,是业内公认的衡量模型长程记忆推理问题的评测标准)


工程方面,在自主开发的分布式训练框架基础上,百川智能整合目前市场上所有先进的优化技术,包括张量并行、流水并行、序列并行、重计算以及Offload功能等,独创了一套全面的4D并行分布式方案。该方案能够根据模型具体的负载情况,自动寻找最适合的分布式策略,极大降低了长窗口训练和推理过程中的显存占用。

百川智能在算法和工程上针对长上下文窗口的创新,不仅是大模型技术层面的突破,对于学术领域同样有着重要意义。Baichuan2-192K验证了长上下文窗口的可行性,为大模型性能提升开拓出了新的科研路径。

Baichuan2-192K正式开启内测,已落地法律、媒体等诸多真实场景

Baichuan2-192K现已正式开启内测,以API调用的方式开放给百川智能的核心合作伙伴,已经与财经类媒体及律师事务所等机构达成了合作,将Baichuan2-192K全球领先的长上下文能力应用到了传媒、金融、法律等具体场景当中,不久后将全面开放。

全面开放API之后,Baichuan2-192K便能够与更多的垂直场景深度结合,真正在人们的工作、生活、学习中发挥作用,助力行业用户更好的降本增效。Baichuan2-192K 能够一次性处理和分析数百页的材料,对于长篇文档关键信息提取与分析,长文档摘要、长文档审核、长篇文章或报告编写、复杂编程辅助等真实场景都有巨大的助力作用。

它可以帮助基金经理总结和解释财务报表,分析公司的风险和机遇;帮助律师识别多个法律文件中的风险,审核合同和法律文件;帮助技术人员阅读数百页的开发文档,并回答技术问题;还能帮助科员人员快速浏览大量论文,总结最新的前沿进展。

不仅如此,更长的上下文还为其更好的处理和理解复杂的多模态输入,以及实现更好的迁移学习提供了底层支撑,这将为行业探索Agent、多模态应用等前沿领域打下良好技术基础。

这篇关于百川智能发布大模型Baichuan2-192K,一次可输入35万字超越Claude2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/308535

相关文章

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Maven 依赖发布与仓库治理的过程解析

《Maven依赖发布与仓库治理的过程解析》:本文主要介绍Maven依赖发布与仓库治理的过程解析,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录Maven 依赖发布与仓库治理引言第一章:distributionManagement配置的工程化实践1

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调