【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第二步)-----KITTI数据集预测

本文主要是介绍【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第二步)-----KITTI数据集预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在查看本篇文章之前,请先查看博主的上一篇文章【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第一步)-----环境配置_努力弹琴的大风天的博客-CSDN博客

配置好环境之后,再进行接下来的操作

目录

一、源码、数据集和预训练下载

(1)源码下载

(2)KITTI数据集下载

(3)预训练权重下载

 二、预测

1.单张图片预测

2.整个数据集预测


一、源码、数据集和预训练下载

(1)源码下载

源码位置:https://github.com/VainF/DeepLabV3Plus-Pytorch

点击:Code > Download ZIP 下载即可。

 下载完成后,解压到Ubuntu桌面(其它位置也可),得到项目文件夹DeepLabV3Plus-Pytorch-master。

(2)KITTI数据集下载

KITTI部分原始数据集:https://github.com/ErenBalatkan/Bts-PyTorch/blob/master/kitti_archives_to_download.txt

本文选取上面数据集中其中之一做测试,链接如下:https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_09_29_drive_0004/2011_09_29_drive_0004_sync.zip

 将2011_09_29_drive_0004数据集下载下来,解压之后,将图片数据集放在项目文件夹DeepLabV3Plus-Pytorch-master/dataset/data下面:

注意:数据集一般放在项目文件夹下面,这个位置可以自己定义,也可以自己在DeepLabV3Plus-Pytorch-master下面新建文件夹存放。

数据集中image_00,image_01是黑白的相机图片;

image_02,image_03是彩色的相机图片;

oxts是保存的imu和gnss数据;

velodyne_points是velodyne激光雷达的点云数据。

本文只使用image_02做测试

train_aug.txt是项目文件夹DeepLabV3Plus-Pytorch-master/datasets/data中自带的,不需要管。

(3)预训练权重下载

下载地址(任选一个即可):

https://www.dropbox.com/sh/w3z9z8lqpi8b2w7/AAB0vkl4F5vy6HdIhmRCTKHSa?dl=0

或者

https://share.weiyun.com/qqx78Pv5

本文只使用:best_deeplabv3plus_mobilenet_cityscapes_os16.pth。其它的可以自己下载测试

下载完成后,在项目文件夹DeepLabV3Plus-Pytorch-master中新建一个checkpoints文件夹,将best_deeplabv3plus_mobilenet_cityscapes_os16.pth文件放在该文件夹下。

 二、预测

1.单张图片预测

# 激活上一篇文章创建好的虚拟环境中
conda activate deeplabv3+
# 切换到项目文件夹下面
cd  DeepLabV3Plus-Pytorch-master
# 运行预测代码
python3 predict.py --input ~/Desktop/DeepLabV3Plus-Pytorch-master/datasets/data/image_02/data/0000000001.png --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_result# ~/Desktop/DeepLabV3Plus-Pytorch-master/datasets/data/image_02/data/0000000001.png为单张预测图片的路径,根据自己的数据位置选择# best_deeplabv3plus_mobilenet_cityscapes_os16.pth为预训练权重路径# 预测结果保存在test_results文件夹下(代码运行过程中会自己创建test_results文件夹)

单张图片预测代码运行过程几秒,预测结果在 DeepLabV3Plus-Pytorch-master/test_results中可以查看:

2.整个数据集预测

将上一步的图片路径改为整个文件夹即可(速度快慢取决于你的显卡,本文显卡2060,整个过程需要二十多秒):

结果如下图:

 因为是自己的论文课题,接下来会继续复现数据集训练,测试过程。大家有复现过程有什么问题,欢迎在评论区发表评论,博主随时提供帮助。

这篇关于【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第二步)-----KITTI数据集预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/307664

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所