【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第二步)-----KITTI数据集预测

本文主要是介绍【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第二步)-----KITTI数据集预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在查看本篇文章之前,请先查看博主的上一篇文章【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第一步)-----环境配置_努力弹琴的大风天的博客-CSDN博客

配置好环境之后,再进行接下来的操作

目录

一、源码、数据集和预训练下载

(1)源码下载

(2)KITTI数据集下载

(3)预训练权重下载

 二、预测

1.单张图片预测

2.整个数据集预测


一、源码、数据集和预训练下载

(1)源码下载

源码位置:https://github.com/VainF/DeepLabV3Plus-Pytorch

点击:Code > Download ZIP 下载即可。

 下载完成后,解压到Ubuntu桌面(其它位置也可),得到项目文件夹DeepLabV3Plus-Pytorch-master。

(2)KITTI数据集下载

KITTI部分原始数据集:https://github.com/ErenBalatkan/Bts-PyTorch/blob/master/kitti_archives_to_download.txt

本文选取上面数据集中其中之一做测试,链接如下:https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/2011_09_29_drive_0004/2011_09_29_drive_0004_sync.zip

 将2011_09_29_drive_0004数据集下载下来,解压之后,将图片数据集放在项目文件夹DeepLabV3Plus-Pytorch-master/dataset/data下面:

注意:数据集一般放在项目文件夹下面,这个位置可以自己定义,也可以自己在DeepLabV3Plus-Pytorch-master下面新建文件夹存放。

数据集中image_00,image_01是黑白的相机图片;

image_02,image_03是彩色的相机图片;

oxts是保存的imu和gnss数据;

velodyne_points是velodyne激光雷达的点云数据。

本文只使用image_02做测试

train_aug.txt是项目文件夹DeepLabV3Plus-Pytorch-master/datasets/data中自带的,不需要管。

(3)预训练权重下载

下载地址(任选一个即可):

https://www.dropbox.com/sh/w3z9z8lqpi8b2w7/AAB0vkl4F5vy6HdIhmRCTKHSa?dl=0

或者

https://share.weiyun.com/qqx78Pv5

本文只使用:best_deeplabv3plus_mobilenet_cityscapes_os16.pth。其它的可以自己下载测试

下载完成后,在项目文件夹DeepLabV3Plus-Pytorch-master中新建一个checkpoints文件夹,将best_deeplabv3plus_mobilenet_cityscapes_os16.pth文件放在该文件夹下。

 二、预测

1.单张图片预测

# 激活上一篇文章创建好的虚拟环境中
conda activate deeplabv3+
# 切换到项目文件夹下面
cd  DeepLabV3Plus-Pytorch-master
# 运行预测代码
python3 predict.py --input ~/Desktop/DeepLabV3Plus-Pytorch-master/datasets/data/image_02/data/0000000001.png --dataset cityscapes --model deeplabv3plus_mobilenet --ckpt checkpoints/best_deeplabv3plus_mobilenet_cityscapes_os16.pth --save_val_results_to test_result# ~/Desktop/DeepLabV3Plus-Pytorch-master/datasets/data/image_02/data/0000000001.png为单张预测图片的路径,根据自己的数据位置选择# best_deeplabv3plus_mobilenet_cityscapes_os16.pth为预训练权重路径# 预测结果保存在test_results文件夹下(代码运行过程中会自己创建test_results文件夹)

单张图片预测代码运行过程几秒,预测结果在 DeepLabV3Plus-Pytorch-master/test_results中可以查看:

2.整个数据集预测

将上一步的图片路径改为整个文件夹即可(速度快慢取决于你的显卡,本文显卡2060,整个过程需要二十多秒):

结果如下图:

 因为是自己的论文课题,接下来会继续复现数据集训练,测试过程。大家有复现过程有什么问题,欢迎在评论区发表评论,博主随时提供帮助。

这篇关于【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+(第二步)-----KITTI数据集预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/307664

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用