python数据分析——认识GBR梯度提升回归模型

2023-10-29 11:30

本文主要是介绍python数据分析——认识GBR梯度提升回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GBR——Gradient boosting regression——梯度提升回归模型

目 录

1 Boosting

   集成学习,Boosting与Bagging的区别

2 Gradient Boosting算法

   算法思想,算法实现,残差与负梯度

 3 终极组合GBR


Boosting

Boosting是一种机器学习算法,常见的机器学习算法有:

决策树算法、朴素贝叶斯算法、支持向量机算法、随机森林算法、人工神经网络算法

Boosting与Bagging算法(回归算法)、关联规则算法、EM(期望最大化)算法、深度学习

1.1 集成学习

背景

我们希望训练得到的模型是一个各方面都稳定表现良好的模型,但是实际情况中得到的在某方面偏好的模型。集成学习则可以通过多个学习器相结合,来获得比单一学习器更优越的泛化性能。

原理

一般集成学习会通过重采样获得一定数量的样本,然后训练多个弱学习器,采用投票法,即少数服从多数原则来选择分类结果,当少数学习器出现错误时,也可以通过多数学习器来纠正结果。

分类

1)个体学习器之间存在较强的依赖性,必须串行生成学习器:boosting类算法;

2) 个体学习器之间不存在强依赖关系,可以并行生成学习器:Bagging类算法

1.2 Boosting与Bagging区别

Boosting

种通用的增强基础算法性能的回归分析算法。它可以将弱学习算法提高为强学习算法,可以应用到其它基础回归算法,如线性回归、神经网络等,来提高精度。

Boosting由于各基学习器之间存在强依赖关系,因此只能串行处理,也就是说Boosting实际上是个迭代学习的过程。

Boosting的工作机制为:

1) 先从初始训练集中训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器处理不当的样本在后续的训练过程中受到更多关注;
2) 然后基于调整后的样本分布来训练下一个基学习器;  
3) 如此重复,直到基学习器数目达到事先自定的值 T ,然后将这 T 个基学习器进行加权结合。

 Bagging

首先从数据集中采样出T个数据集,然后基于这T个数据集,每个训练出一个基分类器,再将这些基分类器进行组合做出预测。Bagging在做预测时,对于分类任务,使用简单的投票法。对于回归任务使用简单平均法。若分类预测时出现两个类票数一样时,则随机选择一个。Bagging非常适合并行处理。

2 Gradient Boosting算法

任何监督学习算法的目标是定义一个损失函数并将其最小化。

Gradient Boosting 的基本思想是:串行地生成多个弱学习器,每个弱学习器的目标是拟合先前累加模型的损失函数的负梯度,使加上该弱学习器后的累积模型损失往负梯度的方向减少。

举个简单的例子

假设有个样本真实值为 10,第一个弱学习器拟合结果为7,则残差为10-7=3

使残差 3 作为下一个学习器的拟合目标,第二个弱学习其拟合结果为2

则这两个弱学习器组合而成的 Boosting 模型对于样本的预测为7+2=9

以此类推可以继续增加弱学习器以提高性能。

和其他boost方法一样,梯度提升方法也是通过迭代的方法联合弱”学习者”联合形成一个强学习者。

2.1 算法思想

2.2 算法实现

1)初始化模型函数

2)For m = 1 to M:

使用损失函数的负梯度在当前模型 Fm-1(x)上的值近似代替残差:

使用基学习器 h(x)拟合近似的残差值:

计算最优的ɤ:

3)更新模型 :

4)返回Fm(x)

2.3 残差与负梯度

 

 3 终极组合GBR

GBR就是弱学习器是回归算法。

常见的回归算法:

线性回归(Linear Regression

逻辑回归(Logistic Regression

多项式回归(Polynomial Regression

逐步回归(Stepwise Regression

岭回归(Ridge Regression

套索回归(Lasso Regression

弹性回归(ElasticNet Regression

其他GB算法:

GBRT (Gradient BoostRegression Tree)

梯度提升回归树

GBDT (Gradient BoostDecision Tree)

梯度提升决策树

这篇关于python数据分析——认识GBR梯度提升回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300328

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e