python数据分析——认识GBR梯度提升回归模型

2023-10-29 11:30

本文主要是介绍python数据分析——认识GBR梯度提升回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GBR——Gradient boosting regression——梯度提升回归模型

目 录

1 Boosting

   集成学习,Boosting与Bagging的区别

2 Gradient Boosting算法

   算法思想,算法实现,残差与负梯度

 3 终极组合GBR


Boosting

Boosting是一种机器学习算法,常见的机器学习算法有:

决策树算法、朴素贝叶斯算法、支持向量机算法、随机森林算法、人工神经网络算法

Boosting与Bagging算法(回归算法)、关联规则算法、EM(期望最大化)算法、深度学习

1.1 集成学习

背景

我们希望训练得到的模型是一个各方面都稳定表现良好的模型,但是实际情况中得到的在某方面偏好的模型。集成学习则可以通过多个学习器相结合,来获得比单一学习器更优越的泛化性能。

原理

一般集成学习会通过重采样获得一定数量的样本,然后训练多个弱学习器,采用投票法,即少数服从多数原则来选择分类结果,当少数学习器出现错误时,也可以通过多数学习器来纠正结果。

分类

1)个体学习器之间存在较强的依赖性,必须串行生成学习器:boosting类算法;

2) 个体学习器之间不存在强依赖关系,可以并行生成学习器:Bagging类算法

1.2 Boosting与Bagging区别

Boosting

种通用的增强基础算法性能的回归分析算法。它可以将弱学习算法提高为强学习算法,可以应用到其它基础回归算法,如线性回归、神经网络等,来提高精度。

Boosting由于各基学习器之间存在强依赖关系,因此只能串行处理,也就是说Boosting实际上是个迭代学习的过程。

Boosting的工作机制为:

1) 先从初始训练集中训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器处理不当的样本在后续的训练过程中受到更多关注;
2) 然后基于调整后的样本分布来训练下一个基学习器;  
3) 如此重复,直到基学习器数目达到事先自定的值 T ,然后将这 T 个基学习器进行加权结合。

 Bagging

首先从数据集中采样出T个数据集,然后基于这T个数据集,每个训练出一个基分类器,再将这些基分类器进行组合做出预测。Bagging在做预测时,对于分类任务,使用简单的投票法。对于回归任务使用简单平均法。若分类预测时出现两个类票数一样时,则随机选择一个。Bagging非常适合并行处理。

2 Gradient Boosting算法

任何监督学习算法的目标是定义一个损失函数并将其最小化。

Gradient Boosting 的基本思想是:串行地生成多个弱学习器,每个弱学习器的目标是拟合先前累加模型的损失函数的负梯度,使加上该弱学习器后的累积模型损失往负梯度的方向减少。

举个简单的例子

假设有个样本真实值为 10,第一个弱学习器拟合结果为7,则残差为10-7=3

使残差 3 作为下一个学习器的拟合目标,第二个弱学习其拟合结果为2

则这两个弱学习器组合而成的 Boosting 模型对于样本的预测为7+2=9

以此类推可以继续增加弱学习器以提高性能。

和其他boost方法一样,梯度提升方法也是通过迭代的方法联合弱”学习者”联合形成一个强学习者。

2.1 算法思想

2.2 算法实现

1)初始化模型函数

2)For m = 1 to M:

使用损失函数的负梯度在当前模型 Fm-1(x)上的值近似代替残差:

使用基学习器 h(x)拟合近似的残差值:

计算最优的ɤ:

3)更新模型 :

4)返回Fm(x)

2.3 残差与负梯度

 

 3 终极组合GBR

GBR就是弱学习器是回归算法。

常见的回归算法:

线性回归(Linear Regression

逻辑回归(Logistic Regression

多项式回归(Polynomial Regression

逐步回归(Stepwise Regression

岭回归(Ridge Regression

套索回归(Lasso Regression

弹性回归(ElasticNet Regression

其他GB算法:

GBRT (Gradient BoostRegression Tree)

梯度提升回归树

GBDT (Gradient BoostDecision Tree)

梯度提升决策树

这篇关于python数据分析——认识GBR梯度提升回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/300328

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我