果蔬购物商城管理与推荐系统Python+Django网页界面+协同过滤推荐算法

本文主要是介绍果蔬购物商城管理与推荐系统Python+Django网页界面+协同过滤推荐算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

果蔬购物管理与推荐系统。本系统以Python作为主要开发语言,前端通过HTML、CSS、BootStrap等框架搭建界面,后端使用Django框架作为逻辑处理,通过Ajax实现前后端的数据通信。并基于用户对商品的评分信息,采用协同过滤推荐算法,实现对当前登录用户的个性化商品推荐。
主要功能有:

  • 该系统分为普通用户和管理员两个角色
  • 普通用户登录、注册
  • 普通用户查看商品、加入购物车、购买、查看详情、发布评论、进行评分、查看购物车、个人订单、商品推荐等界面功能
  • 管理员可以对商品和用户所有信息进行管理

二、系统部分效果图片展示

img_10_28_19_29_34.jpg
img_10_28_19_29_57.jpg
img_10_28_19_31_00.jpg
img_10_28_19_31_07.jpg

三、演示视频 and 代码

视频+代码:https://www.yuque.com/ziwu/yygu3z/eiatceryze6simrx

四、协同过滤算法

协同过滤是一种常用的推荐系统算法,主要通过分析用户的历史行为数据(如评分、购买、浏览等)来预测用户可能感兴趣的项目。协同过滤算法主要有两种类型:基于用户的协同过滤(User-Based Collaborative Filtering)和基于物品的协同过滤(Item-Based Collaborative Filtering)。
基于用户的协同过滤是一种传统的推荐算法,核心思想是找到与目标用户兴趣相似的其他用户,然后推荐这些用户喜欢的项目给目标用户。这种方法认为,如果一个用户在过去喜欢了某些项目,那么他/她在未来也很有可能会喜欢相似用户喜欢的其他项目。
算法流程:

  1. 计算用户之间的相似度: 常用的相似度计算方法有余弦相似度、皮尔逊相关系数、Jaccard相似度等。
  2. 找到最相似的用户: 根据计算出的相似度,找到与目标用户最相似的前K个用户。
  3. 生成推荐列表: 基于这K个相似用户的行为记录,预测目标用户对未曾互动过的项目的评分,并推荐评分最高的N个项目。

优点:

  • 简单直观: 算法易于理解和实现。
  • 自然的解释性: 推荐的结果可以通过相似用户的行为直观解释。

下面是一个基于用户的协同过滤推荐算法的简单实现示例:

import numpy as np
from sklearn.metrics.pairwise import cosine_similaritydef user_based_collaborative_filtering(rating_matrix, user_id, k=5):"""基于用户的协同过滤推荐算法:param rating_matrix: 用户-商品评分矩阵, numpy array, shape (n_users, n_items):param user_id: 目标用户的id:param k: 要考虑的最相似的用户数量:return: 推荐商品的列表"""# 计算用户之间的余弦相似度user_similarity = cosine_similarity(rating_matrix)# 获取目标用户的相似度向量target_user_similarity = user_similarity[user_id]# 获取最相似的k个用户的idsimilar_users = np.argsort(target_user_similarity)[-k-1:-1][::-1]# 推荐这些用户喜欢的商品# 注意:这里简单地将这些用户评分过的商品作为推荐,实际应用中可能需要加权平均或其他处理recommended_items = set()for user in similar_users:recommended_items = recommended_items.union(np.where(rating_matrix[user] > 0)[0])return list(recommended_items)# 示例使用
rating_matrix = np.array([[4, 0, 2, 0, 1],[0, 3, 0, 0, 0],[1, 0, 0, 5, 1],[0, 0, 0, 4, 4],[0, 4, 3, 0, 0]])user_id = 0  # 选择一个目标用户
recommended_items = user_based_collaborative_filtering(rating_matrix, user_id)
print("Recommended items:", recommended_items)

在这个示例中,rating_matrix是一个用户-商品评分矩阵,user_based_collaborative_filtering函数接受这个评分矩阵、一个目标用户的id和一个参数k,返回基于k个最相似用户的喜好生成的推荐商品列表。

这篇关于果蔬购物商城管理与推荐系统Python+Django网页界面+协同过滤推荐算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/297156

相关文章

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group