Python代码实现:坐标轮换法求解多维最优化问题

2023-10-29 00:20

本文主要是介绍Python代码实现:坐标轮换法求解多维最优化问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 多维最优化问题
  • 坐标轮换法原理
  • 代码实现坐标轮换法
  • 坐标轮换法优缺点

多维最优化问题

此前介绍的黄金分割法和切线法都是针对一维最优化问题的解决方案。本文开始,我们将最优化问题从一维扩展到多维,暂时仍考虑无约束的优化场景。

坐标轮换法原理

问题维度扩展后,很容易想到的一个解决方案就是先将多维问题降维至一维,然后再使用之前的算法依次求解。坐标轮换法就是基于该思路所设计的一个算法,其实现流程(假设问题为2维最小化问题,更高维度可以直接类推)为

  1. 选取初始值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)
  2. 沿着 x x x轴搜索,得到局部最优解: x = x 0 + h x=x_0+h x=x0+h
  3. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,继续执行第4步。
  4. 沿着 y y y轴搜索,得到局部最优解: y = y 0 + t y=y_0+t y=y0+t
  5. 判断解的优化程度是否超出阈值 s s s:如果小于 s s s,直接退出;反之,跳转执行第2步。

其中,第2步和第4步中局部最优解的求解均为一维最优化问题,其计算过程为:先使用进退法确定搜索区间,然后在该区间使用黄金分割法计算最优解。

下图为坐标轮换法的示意图。

代码实现坐标轮换法

以下以二维函数的最小化问题为例,使用Python实现了坐标轮换法。挺尴尬的,代码水平有限,两个方向的计算,进退法和黄金分割法分别使用了两个函数,所以主要关注一下逻辑吧。当然了,这么差的水平,也没必要再用Java写一遍了,以后代码水平提升后再做补充。

# 待优化函数f
def f(x, y):return 2 * x**2 + 3 * y**2 - 8 * x + 10# 待优化函数g
def g(x, y):return 4 + 4.5 * x - 4 * y + x * x + 2 * y * y - 2 * x * y + x**4 - 2 * x * x * y# 进退法:确定搜索区间,x方向
def advance_and_retreat_x(func, x, y, h):if abs(func(x, y) - func(x + h, y)) <= 1e-6:# 第三种情况x_min, x_max = x, x + helif func(x, y) < func(x + h, y):# 第一种情况x_max = x + hlamb = 1while func(x - lamb * h, y) < func(x, y):lamb += 1x_min = x - lamb * helse:# 第二组情况x_min = x + hlamb = 2while func(x + lamb * h, y) < func(x + h, y):lamb += 1x_max = x + lamb * hreturn x_min, x_max# 进退法:确定搜索区间,y方向
def advance_and_retreat_y(func, x, y, h):if abs(func(x, y) - func(x, y + h)) <= 1e-6:# 第三种情况y_min, y_max = y, y + helif func(x, y) < func(x, y + h):# 第一种情况y_max = y + hlamb = 1while func(x, y - lamb * h) < func(x, y):lamb += 1y_min = y - lamb * helse:# 第二组情况y_min = y + hlamb = 2while func(x, y + lamb * h) < func(x, y + h):lamb += 1y_max = y + lamb * hreturn y_min, y_max# 黄金分割法,求解x方向最优解
def golden_section_x(func, a, b, y, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(c, y) < func(d, y):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func((a + b) / 2, y), cnt# 黄金分割法,求解y方向最优解
def golden_section_y(func, a, b, x, eps):# 统计迭代次数cnt = 0while b - a > eps:# 根据黄金分割法规则选择内部两点c = a + (b - a) * 0.382d = a + (b - a) * 0.618# 区间消去原理if func(x, c) < func(x, d):b = delse:a = ccnt += 1# 两点的中点定义为最优解return (a + b) / 2, func(x, (a + b) / 2), cnt# 坐标轮换法
def univariate_search(func, x, y, eps):# 打印初始值对应的解cur_best_f = func(x, y)iters = 0print('iter: {}, best_x: {}, best_y: {}, function calc: {}'.format(iters, x, y, cur_best_f))# 坐标轮换优化while True:iters += 1# x方向优化x_min, x_max = advance_and_retreat_x(func, x, y, 0.1)best_x, best_f, _ = golden_section_x(func, x_min, x_max, y, eps)print('iter_x: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, best_x, y, best_f))x = best_x# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_f# y方向优化y_min, y_max = advance_and_retreat_y(func, x, y, 0.1)best_y, best_f, _ = golden_section_y(func, y_min, y_max, x, eps)print('iter_y: {}, best_x: {}, best_y: {}, best_f: {}'.format(iters, x, best_y, best_f))y = best_y# 退出循环判断if abs(best_f - cur_best_f) <= eps:break# 更新最优解cur_best_f = best_freturn func(x, y)if __name__ == '__main__':# 实例fx_f, y_f, eps_f = 1, 2, 1e-3# 坐标轮换法计算最优解univariate_search(f, x_f, y_f, eps_f)print("===========================")# 实例gx_g, y_g, eps_g = -2, 2.2, 1e-3# 坐标轮换法计算最优解univariate_search(g, x_g, y_g, eps_g)

运行代码后,可以得到

iter: 0, best_x: 1, best_y: 2, function calc: 16
iter_x: 1, best_x: 2.000233763452192, best_y: 2, best_f: 14.000000109290703
iter_y: 1, best_x: 2.000233763452192, best_y: 0.00015399075125497154, best_f: 2.000000180430158
iter_x: 2, best_x: 1.9998462973783453, best_y: 0.00015399075125497154, best_f: 2.0000001183884457
===========================
iter: 0, best_x: -2, best_y: 2.2, function calc: 7.079999999999998
iter_x: 1, best_x: -1.311255594408947, best_y: 2.2, best_f: 1.8592504605100588
iter_y: 1, best_x: -1.311255594408947, best_y: 1.2040230144759103, best_f: -0.12451135087000331
iter_x: 2, best_x: -1.088311474688541, best_y: 1.2040230144759103, best_f: -0.45831207876525415
iter_y: 2, best_x: -1.088311474688541, best_y: 1.048100675705184, best_f: -0.5069639956625354
iter_x: 3, best_x: -1.0568821019967993, best_y: 1.048100675705184, best_f: -0.512672581153325
iter_y: 3, best_x: -1.0568821019967993, best_y: 1.0300634221854548, best_f: -0.5133235969440142

上述两个实例分别来源于实例1和实例2。对比原文的结果可知,最终结果都是吻合的,即本文的算法原理和代码实现是没有问题的。

坐标轮换法优缺点

针对多维最优化问题来说,坐标轮换法应该是非常容易理解和实现的解决方案。虽然文中的代码上不了台面,但是总归是比较容易实现的,而且全程只需要计算目标函数本身,并未引入导数等其他信息,所以计算速度非常快。

坐标轮换法的主要缺点是收敛效率很难保证。这里借网上大佬做的一张图来说明。以下三种为三类最优化问题的等高线图:针对第1种类型的问题,坐标轮换法在2次迭代后便得到了最优解;针对第2种类型的问题,6次迭代可以得到最优解;针对第三种类型的问题,坐标轮换法不收敛,无法得不到最优解。

这篇关于Python代码实现:坐标轮换法求解多维最优化问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/296974

相关文章

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

详解Java中三种状态机实现方式来优雅消灭 if-else 嵌套

《详解Java中三种状态机实现方式来优雅消灭if-else嵌套》这篇文章主要为大家详细介绍了Java中三种状态机实现方式从而优雅消灭if-else嵌套,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录1. 前言2. 复现传统if-else实现的业务场景问题3. 用状态机模式改造3.1 定义状态接口3

Python批量替换多个Word文档的多个关键字的方法

《Python批量替换多个Word文档的多个关键字的方法》有时,我们手头上有多个Excel或者Word文件,但是领导突然要求对某几个术语进行批量的修改,你是不是有要崩溃的感觉,所以本文给大家介绍了Py... 目录工具准备先梳理一下思路神奇代码来啦!代码详解激动人心的测试结语嘿,各位小伙伴们,大家好!有没有想

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

Python如何调用另一个类的方法和属性

《Python如何调用另一个类的方法和属性》在Python面向对象编程中,类与类之间的交互是非常常见的场景,本文将详细介绍在Python中一个类如何调用另一个类的方法和属性,大家可以根据需要进行选择... 目录一、前言二、基本调用方式通过实例化调用通过类继承调用三、高级调用方式通过组合方式调用通过类方法/静

基于Python实现温度单位转换器(新手版)

《基于Python实现温度单位转换器(新手版)》这篇文章主要为大家详细介绍了如何基于Python实现温度单位转换器,主要是将摄氏温度(C)和华氏温度(F)相互转换,下面小编就来和大家简单介绍一下吧... 目录为什么选择温度转换器作为第一个项目项目概述所需基础知识实现步骤详解1. 温度转换公式2. 用户输入处

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服