C# | Chaikin算法 —— 计算折线对应的平滑曲线坐标点

2023-10-28 18:30

本文主要是介绍C# | Chaikin算法 —— 计算折线对应的平滑曲线坐标点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

Chaikin算法——计算折线对应的平滑曲线坐标点

本文将介绍一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。通过对原始点集合进行切割和插值操作,得到平滑的曲线坐标点集合。实验结果表明,该算法能够有效地平滑折线,并且具有较高的精度和可控性。

文章目录

  • Chaikin算法——计算折线对应的平滑曲线坐标点
    • 引言
    • 算法
      • 算法流程
      • Chaikin曲线平滑处理
    • 实验与结果
      • 测试1:验证不同迭代次数下的算法结果
      • 测试2:观察不同张力因子下的算法结果
    • 结论
    • 参考资料

引言

在计算机图形学和数据可视化领域,平滑曲线的生成是一个重要的问题。平滑曲线可以使得数据更加易于理解和分析,同时也可以提高图形的美观性。折线是一种常见的曲线表示方法,但是折线本身具有较高的噪声和锯齿状的特点,需要进行平滑处理。本文提出了一种基于Chaikin曲线平滑处理的算法,可以将折线转化为平滑的曲线。


算法

算法流程

流程的具体步骤如下:

  1. 检查输入的坐标点集合的合法性,确保至少有3个坐标点。
  2. 对输入的参数进行范围约束,确保迭代次数大于等于1,张力因子在0到1之间。
  3. 将张力因子映射到0.05到0.45之间,以便在计算切割距离时使用。
  4. 迭代计算,使用Chaikin曲线平滑处理的方法对坐标点集合进行处理。
  5. 返回平滑后的曲线坐标点集合。
        /// <summary>/// 计算折线对应的平滑曲线坐标点/// </summary>/// <param name="points">坐标集合</param>/// <param name="tension">张力因子[0,1],用于控制曲线的平滑程度。张力因子越小时切割点会越靠近线段的起始点,反之会靠近线段的结束点。</param>/// <param name="iterationCount">迭代次数,用于控制曲线平滑的精度</param>/// <returns></returns>/// <exception cref="ArgumentException"></exception>private List<Point> SmoothCurveChaikin(Point[] points, float tension = 0.5f, byte iterationCount = 1){// 坐标点合法性检查if (points == null || points.Length < 3){throw new ArgumentException("至少需要3个坐标点。", nameof(points));}// 参数范围约束iterationCount = Math.Max(iterationCount, (byte)1);tension = Math.Max(tension, 0);tension = Math.Min(tension, 1);// 参数的限制在0到1之间是为了简化参数的使用和理解。将张力因子的取值范围映射到0到1之间,使得参数的范围更加直观和易于控制。// 通过将张力因子乘以0.4并加上0.05,可以将0到1之间的参数映射到0.05到0.45之间,以便在计算切割距离时使用。// 张力因子在这里用于控制曲线的平滑程度。具体来说,张力因子定义了线段半长切角距离的一个尺度,取值范围在0.05到0.45之间。// 当张力因子为0.5时,相当于使用了经典的Chaikin算法,即将每个线段切割成四分之一和四分之三的两个点。这样可以保持曲线的对称性。double cutdist = 0.05 + (tension * 0.4);// 迭代计算List<Point> lst = points.ToList();for (int i = 1; i <= iterationCount; i++){lst = SmoothChaikin(lst, cutdist);}return lst;}

Chaikin曲线平滑处理

Chaikin曲线平滑处理是一种基于切割和插值的方法,通过对线段进行切割和插值操作,得到平滑的曲线。
在这里插入图片描述
具体步骤如下:

  1. 添加第一个点,即原始点集合的第一个点。
  2. 将每一个点拆分成前后两个点,通过计算切割距离参数和原始点的坐标进行插值计算。
  3. 添加插值计算得到的两个点。
  4. 添加最后一个点,即原始点集合的最后一个点。
  5. 返回平滑后的曲线坐标点集合。
        /// <summary>/// 对点集合进行Chaikin曲线平滑处理/// </summary>/// <param name="points">要进行平滑处理的曲线的原始点</param>/// <param name="cuttingDist">切割距离参数,用于定义线段切割的尺度。取值范围通常在0.05到0.45之间,用于控制曲线的平滑程度</param>/// <returns></returns>private List<Point> SmoothChaikin(List<Point> points, double cuttingDist){// 添加第一个点List<Point> nl = new List<Point> { points[0] };// 将每一个点拆分成前后两个点Point q, r;for (int i = 0; i < points.Count - 1; i++){q = new Point((int)Math.Round(((1 - cuttingDist) * points[i].X + cuttingDist * points[i + 1].X)),(int)Math.Round(((1 - cuttingDist) * points[i].Y + cuttingDist * points[i + 1].Y)));r = new Point((int)Math.Round((cuttingDist * points[i].X + (1 - cuttingDist) * points[i + 1].X)),(int)Math.Round((cuttingDist * points[i].Y + (1 - cuttingDist) * points[i + 1].Y)));nl.Add(q);nl.Add(r);}// 添加最后一个点nl.Add(points.Last());return nl;}

实验与结果

为了验证算法的有效性和可靠性,我们进行了两组测试。

测试1:验证不同迭代次数下的算法结果

测试步骤:

  1. 将张力因子设置为0.5。
  2. 调整迭代次数为1、2、3。
  3. 对比不同迭代次数下的算法结果。

在这里插入图片描述

测试2:观察不同张力因子下的算法结果

测试步骤:

  1. 将迭代次数设置为1。
  2. 调整张力因子为0、0.2、0.4、0.6、0.8。
  3. 观察不同张力因子下的算法结果。
    在这里插入图片描述

本算法在不同的参数设置下进行了实验,得到了不同平滑程度和精度的曲线。实验结果表明,当张力因子较小时,切割点会靠近线段的起始点,曲线的平滑程度较低;当张力因子较大时,切割点会靠近线段的结束点,曲线的平滑程度较高。迭代次数的增加可以提高曲线的平滑精度,但也会增加计算的时间复杂度。实验结果还表明,本算法能够有效地平滑折线,并且具有较高的精度和可控性。


结论

本文介绍了一种计算折线对应的平滑曲线坐标点的算法。该算法使用Chaikin曲线平滑处理的方法,通过控制张力因子和迭代次数来调整曲线的平滑程度和精度。实验结果表明,该算法能够有效地平滑折线,并且具有较高的精度和可控性。未来的工作可以进一步优化算法的性能和扩展算法的应用范围。


参考资料

  1. 2D Polyline Vertex Smoothing

这篇关于C# | Chaikin算法 —— 计算折线对应的平滑曲线坐标点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/295111

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

C#如何去掉文件夹或文件名非法字符

《C#如何去掉文件夹或文件名非法字符》:本文主要介绍C#如何去掉文件夹或文件名非法字符的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#去掉文件夹或文件名非法字符net类库提供了非法字符的数组这里还有个小窍门总结C#去掉文件夹或文件名非法字符实现有输入字

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

mybatis的mapper对应的xml写法及配置详解

《mybatis的mapper对应的xml写法及配置详解》这篇文章给大家介绍mybatis的mapper对应的xml写法及配置详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录前置mapper 对应 XML 基础配置mapper 对应 xml 复杂配置Mapper 中的相