凸包算法Jarvis's march步进法和Graham扫描法的原理及实现

2023-10-28 08:40

本文主要是介绍凸包算法Jarvis's march步进法和Graham扫描法的原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

凸包概念

在二维欧几里得空间中,凸包可想象为一条刚好包著所有点的橡皮圈。
        用自己的话说就是在一个点集中,能够包含所有点的凸多边形(所有的点都能落入多边形的内部)。专业的描述可以通过百度百科了解。在作者Kyle Loudon的《Mastering Algorithms with C》一书的中文版中描述到一个点集的凸包是指包含该点集中的所有点的最小凸多边形。如果一个多边形内任意两点之间的连线完全包含在该多边形内,则称这个多边形是凸多边形;否则多边形就是凹的。要想画一个点集的凸包,可把它假想成一块板子上的钉子。如果用细线将最外层的钉子逐个连接起来,那么细线所围成的形状就是凸包。如下图所示a为凸包,b为凹多边形。     

如图c所示所有的黑色点表示一个点集,P1~P8表示生成生成凸包的点集。
                                                   

                                          
         在这里介绍两种求有限点集的凸包,一种Jarvis's march的步进法,另一种是Grahamd的扫描法。本文档代码实现在Qt5.7.0环境下,仅供作为参考,不保证直接拿去使用没有问题。

通用函数

1)共线情况找出距离远的点

#define SEGMENTLEN(x0,y0,x1,y1) (sqrt(pow(((x1)-(x0)), 2.0) + pow(((y1)-(y0)), 2.0)))

2)判断点的位置(上边/下边)

qreal Convex::comparePointClock(const QPointF &point_0, const QPointF &point_c, const QPointF &point_i)
{return ((point_i.x() - point_0.x())*(point_c.y() - point_0.y()) - (point_i.y() - point_0.y())*(point_c.x() - point_0.x()));
}

3)删除重复坐标

quint32 Convex::removeRepeatPoints(QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return 0;QVector<QPointF> tempVecPorint;tempVecPorint = vecPoints;vecPoints.clear();QPointF tempPoint;while (tempVecPorint.size()){tempPoint = tempVecPorint.at(0);tempVecPorint.removeAll(tempPoint);vecPoints.push_back(tempPoint);}return vecPoints.size();
}

4)获取最小坐标

QPointF Convex::getMinimumPoint(const QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return QPointF();QPointF minPoint = vecPoints.at(0);quint16 point_x = vecPoints.at(0).x(), point_y = vecPoints.at(0).y();for (QVector<QPointF>::const_iterator it = vecPoints.constBegin(); it != vecPoints.constEnd(); it++){//比较Y坐标,找Y坐标最小的if (it->y() < minPoint.y()){minPoint = (*it);}else{//Y坐标相同,找X坐标小的if (it->y() == minPoint.y() && it->x() < minPoint.x()){minPoint = (*it);}}}return minPoint;
}

Jarvis's march 步进算法,复杂度O(nH),H为点的个数

步骤:

1)找到坐标最下的点,此点必定在凸包点集中,(如果出现纵坐标最小的点有多个,那么在这些点中找到横坐标最小的点,即点集中最左下角的点)起始点作为P_0,并把其入栈。

2)遍历点集利用向量叉积的方法判断点是在线的上边(左边)还是下边(右边),设第二个点为P_c,遍历的点为P_i。如果向量叉积结果>0说明P_i在P_0P_c连线的下边(右边),<0说明P_i在P_0P_c连线的上边(左边),==0说明P_i在P_0P_c连线上。如果点在直线的下方则更新P_c为P_i;如果在线上的话,找到距离P_0较远的点作为P_c,然后把P_c作为P_0入栈,依次类推直到遍历一周再次到达第一个入栈的点。

具体实现源码如下:

//Jarvis's march 算法,O(nH),H为点的个数。
qint8 Convex::getConvexHullJarvis(const QVector<QPointF> &vecSourPoints, QVector<QPointF> &vecTarPoints)
{if (vecSourPoints.isEmpty())return -1;QPointF minPoint;QPointF lowPoint, point_0, point_i, point_c;qreal count = 0,z = 0;qreal length_1, length_2;QVector<QPointF> tempVecPoint(vecSourPoints);vecTarPoints.clear();//删除重复坐标if (removeRepeatPoints(tempVecPoint) <= 0)return -1;//查找最小坐标minPoint = getMinimumPoint(tempVecPoint);lowPoint = minPoint;point_0 = lowPoint;do {//起始点point_0压入凸包点集中vecTarPoints.push_back(point_0);count = 0;for (QVector<QPointF>::iterator it = tempVecPoint.begin(); it != tempVecPoint.end(); it++){//跳过起始坐标if ((*it) == point_0)continue;count++;if (count == 1) //把第一个遍历的点作为point_c{point_c = (*it);continue;}//如果z>0则point在point_i和point_c连线的下方,z<0则point_i在连线的上方,z=0则point_i共线z = comparePointClock(point_0,point_c,(*it));//((it->x() - point_0.x())*(point_c.y() - point_0.y()) - (it->y() - point_0.y())*(point_c.x() - point_0.x()));if (z > 0){point_c = (*it);}else if (z == 0){//共线情况找出距离point_0较远的那个点作为point_clength_1 = SEGMENTLEN(point_0.x(),point_0.y(),it->x(),it->y());length_2 = SEGMENTLEN(point_0.x(), point_0.y(), point_c.x(), point_c.y());if (length_1 > length_2){point_c = (*it);}}}point_0 = point_c;} while (point_0 != lowPoint);vecTarPoints.push_back(lowPoint);if (vecTarPoints.isEmpty())return -1;return 0;
}

Graham 扫描算法,复杂度O(nlgn)

步骤:

1)与Jarvis's march算法一样找到坐标最下的点作为P_0。

2)对一批无序的点集中的点按照极角从小到大进行排序,如果极角相同则按由近及远进行排序(以P_0为起始点)。

按极角从小到大进行排序:

QPointF m_point0;
bool comPolarAngle(const QPointF &point_1, const QPointF &point_2)
{qreal z = ((point_2.x() - m_point0.x())*(point_1.y() - m_point0.y()) - (point_2.y() - m_point0.y())*(point_1.x() - m_point0.x()));if (fabs(z) < 1e-6){qreal length_1 = SEGMENTLEN(m_point0.x(), m_point0.y(), point_1.x(), point_1.y());qreal length_2 = SEGMENTLEN(m_point0.x(), m_point0.y(), point_2.x(), point_2.y());return length_1 > length_2;}else{return z < 0;}
}
bool Convex::sortByPolarAngle(QVector<QPointF> &vecPoints)
{if (vecPoints.isEmpty())return false;QVector<QPointF> tempVecPoint(vecPoints);tempVecPoint.removeOne(m_point0);qreal z = 0;qSort(tempVecPoint.begin(), tempVecPoint.end(), comPolarAngle);tempVecPoint.push_front(m_point0);vecPoints = tempVecPoint;return true;
}

3)让排序后的点集中的前三个点依次入栈,然后开始遍历其后点,如果其后点与栈顶两个点不构成向左旋转的关系,则弹出栈顶元素,直到没有点需要出栈,那么就将当前点入栈,依次循环直到算有点都遍历结束。

具体实现源码:

//Graham 扫描算法,O(nlgn)。
qint8 Convex::getConvecHullGraham(const QVector<QPointF> &vecSourPoints, QVector<QPointF> &vecTarPoints)
{if (vecSourPoints.isEmpty())return -1;QVector<QPointF> tempVecPoint(vecSourPoints);//删除重复坐标if (removeRepeatPoints(tempVecPoint) <= 0)return -1;//查找最小坐标QPointF minPoint;minPoint = getMinimumPoint(tempVecPoint);m_point0 = minPoint;//按极角进行排序if(!sortByPolarAngle(tempVecPoint))return -1;vecTarPoints.clear();vecTarPoints.push_back(tempVecPoint.at(0));vecTarPoints.push_back(tempVecPoint.at(1));vecTarPoints.push_back(tempVecPoint.at(2));qint32 vecTop = 2;for (int i = 3; i < tempVecPoint.size(); i++){while (vecTop > 0&& (comparePointClock(vecTarPoints.at(vecTop - 1), vecTarPoints.at(vecTop), tempVecPoint.at(i)) >= 0)){vecTop--;vecTarPoints.pop_back();}vecTarPoints.push_back(tempVecPoint.at(i));vecTop++;}vecTarPoints.push_back(minPoint);if (vecTarPoints.isEmpty())return -1;return 0;
}

注:源码.h和.cpp文件请在本人GitHub中浏览,望与参考的人一起学习进步!

地址:https://github.com/CMwshuai/ConvexHull.git

这篇关于凸包算法Jarvis's march步进法和Graham扫描法的原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/292042

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构