pytorch深度学习实践(二):梯度下降算法详解和代码实现(梯度下降、随机梯度下降、小批量梯度下降的对比)

本文主要是介绍pytorch深度学习实践(二):梯度下降算法详解和代码实现(梯度下降、随机梯度下降、小批量梯度下降的对比),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、梯度下降
    • 1.1 公式与原理
      • 1.1.1 cost(w)
      • 1.1.2 梯度
      • 1.1.3 w的更新
    • 1.2 训练过程可视化
    • 1.3 代码实现
  • 二、随机梯度下降(stochastic gradient descent,SDG)
    • 2.1 公式与原理
      • 2.1.1 w的更新
    • 2.2 代码实现
    • 2.3 梯度下降和随机梯度下降的优缺点对比
      • 2.3.1 梯度下降算法(Batch Gradient Descent)
      • 2.3.2 随机梯度下降算法(Stochastic Gradient Descent)
  • 三、小批量梯度下降(Mini-batch Gradient Descent)
    • 3.1 优势
    • 3.2缺点
    • 3.3 代码实现
  • 总结

一、梯度下降

1.1 公式与原理

1.1.1 cost(w)

cost为数据集中所有样本的误差值平方再求均值。

在这里插入图片描述

1.1.2 梯度

计算梯度时为所有样本的梯度。一个样本的梯度为: g r a d i = 2 ∗ x i ∗ ( x i ∗ w i − y i ) grad_i = 2*x_i*(x_i*w_i-y_i) gradi=2xi(xiwiyi),所有样本的梯度为所有样本的 g r a d i grad_i gradi的和求平均。
在这里插入图片描述

1.1.3 w的更新

一个epoch中:w会等到中所有的x和y都计算完平均值之后再更新。

1.2 训练过程可视化

一般正常的训练过程中cost function都是一直在波动中下降的,如果出现了cost先下降到最小然后又上升的情况(抛物线),则说明训练失败,一般的原因是因为学习率设置过大。

在这里插入图片描述

1.3 代码实现

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w=1.0def forward(x):return x*wdef cost(xs,ys):cost = 0for x,y in zip(xs,ys):y_pred = forward(x)cost += (y_pred - y) ** 2return cost/len(xs)def gradient(xs,ys):grad = 0for x,y in zip(xs,ys):grad+= 2*x*(x*w-y)return grad/len(xs)w_list = []
cost_list = []
w_list.append(0.1)
for epoch in range(101):cost_val = cost(x_data,y_data)grad_val = gradient(x_data,y_data)w-=0.01*grad_valw_list.append(w)cost_list.append(cost_val)print('Epoch:',epoch,'w=',w,'loss',cost_val)plt.plot(range(101),cost_list)
plt.xlabel('epoch')
plt.ylabel('cost')
plt.show()

在这里插入图片描述
在这里插入图片描述

二、随机梯度下降(stochastic gradient descent,SDG)

2.1 公式与原理

随机梯度下降:从样本中随机抽出一组x和y,训练后按梯度更新一次,然后再抽取一组,再更新一次。

在这里插入图片描述

2.1.1 w的更新

计算一次 x i x_i xi y i y_i yi的梯度就进行一次参数更新。

一个epoch中:要进行样本个数次的参数更新

2.2 代码实现

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w=1.0def forward(x):return x*wdef loss(x,y):return (forward(x)-y)**2def grad(x,y):return 2 * x * (x * w - y)loss_list = []
for epoch in range(101):for x,y in zip(x_data,y_data):w -= 0.01*grad(x,y)l = loss(x,y)loss_list.append(l)print("epoch=",epoch,"w=",w,"loss=",loss)plt.plot(range(101),loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()

在这里插入图片描述
在这里插入图片描述

2.3 梯度下降和随机梯度下降的优缺点对比

2.3.1 梯度下降算法(Batch Gradient Descent)

优点:

收敛性较好: 梯度下降在每次迭代中使用整个训练集计算梯度,通常能够更快地收敛到较好的解;
稳定性高: 由于使用整个训练集计算梯度,梯度下降的更新方向相对稳定,能够更稳定地接近最优解;
可并行化: 由于每次迭代使用整个训练集,梯度下降可以更容易地进行并行化计算,加快训练速度。

缺点:

内存消耗大: 梯度下降需要在内存中保存整个训练集,对于大规模数据集来说,内存消耗较大;
计算代价高: 每次迭代都需要计算整个训练集的梯度,对于大规模数据集和复杂模型,计算代价较高;
容易陷入局部最优解:梯度下降可能会陷入局部最优解,特别是在非凸优化问题中。

2.3.2 随机梯度下降算法(Stochastic Gradient Descent)

优点:

计算代价低: 随机梯度下降每次迭代只使用一个样本计算梯度,因此计算代价较低;
内存消耗小:由于只需要一个样本,随机梯度下降的内存消耗相对较小;
可适用于在线学习:随机梯度下降适用于在线学习,可以动态地更新模型。

缺点:

收敛性相对较差: 由于梯度的随机性,随机梯度下降的收敛性较梯度下降差,可能会陷入波动或震荡;
不稳定:由于每次迭代只使用一个样本,随机梯度下降的更新方向相对不稳定,可能无法稳定地接近最优解;
学习率选择困难: 由于样本的随机性,随机梯度下降的学习率选择较为困难,需要进行合适的学习率调度。

三、小批量梯度下降(Mini-batch Gradient Descent)

结合BGD和SGD的优点,每一个epoch中取batchsize个样本进行梯度的更新。在每次迭代中随机均匀采样多个样本来组成一个小批量来计算梯度,一个epoch周期内会进行(样本数目/批量大小)次的参数更新。

3.1 优势

小批量梯度下降(Mini-batch Gradient Descent)是梯度下降和随机梯度下降的一种折衷方案,它同时具有一些梯度下降和随机梯度下降的优势,主要包括以下几点优势:

  1. 较低的方差:相比于随机梯度下降,小批量梯度下降使用一小批样本来计算梯度,因此梯度估计的方差较低。 这使得小批量梯度下降相对更稳定,收敛性更好,并且可以更快地接近最优解。

  2. 较高的计算效率:相比于梯度下降,小批量梯度下降每次迭代只使用一小批样本计算梯度,因此计算代价较低。这使得小批量梯度下降在处理大规模数据集时更具优势,能够更快地完成一轮迭代。

  3. 更好的泛化性能:由于小批量梯度下降使用了一小批样本的信息,在每次迭代中能够更好地反映训练集的整体特点。这使得小批量梯度下降相对于随机梯度下降在一定程度上具有更好的泛化性能,可以得到更好的模型。

  4. 并行化能力:小批量梯度下降的计算可以进行一定程度的并行化处理。由于每次迭代使用了一小批样本,可以将这些样本分配给不同的计算单元进行计算,从而提高训练速度。

3.2缺点

与梯度下降相比,由于每次迭代只使用了一小批样本,可能会引入一些噪声,导致更新方向相对不稳定。

小批量梯度下降需要选择合适的批大小,过小的批大小可能导致收敛速度变慢,而过大的批大小可能会增加计算代价和内存消耗。

3.3 代码实现

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w=1.0
n=2
x_data_n = x_data[0:2]
y_data_n = y_data[0:2]def forward(x):return x*wdef loss(x1,y1,n):loss = 0for x,y in zip(x1,y1):loss += (forward(x)-y)**2return loss/ndef grad(x1,y1,n):grad = 0for x, y in zip(x1, y1):grad += 2*x*(x*w-y)return grad/nloss_list = []for epoch in range(101):w-=0.01*grad(x_data_n,y_data_n,n)loss_list.append(loss(x_data_n,y_data_n,n))print("epoch=",epoch,"w=",w,"loss=",loss)plt.plot(range(101),loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()

在这里插入图片描述
在这里插入图片描述

总结

现在多使用小批量随机梯度下降算法来进行梯度的更新。

这篇关于pytorch深度学习实践(二):梯度下降算法详解和代码实现(梯度下降、随机梯度下降、小批量梯度下降的对比)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/290733

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Mysql数据库聚簇索引与非聚簇索引举例详解

《Mysql数据库聚簇索引与非聚簇索引举例详解》在MySQL中聚簇索引和非聚簇索引是两种常见的索引结构,它们的主要区别在于数据的存储方式和索引的组织方式,:本文主要介绍Mysql数据库聚簇索引与非... 目录前言一、核心概念与本质区别二、聚簇索引(Clustered Index)1. 实现原理(以 Inno

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象