pytorch深度学习实践(二):梯度下降算法详解和代码实现(梯度下降、随机梯度下降、小批量梯度下降的对比)

本文主要是介绍pytorch深度学习实践(二):梯度下降算法详解和代码实现(梯度下降、随机梯度下降、小批量梯度下降的对比),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、梯度下降
    • 1.1 公式与原理
      • 1.1.1 cost(w)
      • 1.1.2 梯度
      • 1.1.3 w的更新
    • 1.2 训练过程可视化
    • 1.3 代码实现
  • 二、随机梯度下降(stochastic gradient descent,SDG)
    • 2.1 公式与原理
      • 2.1.1 w的更新
    • 2.2 代码实现
    • 2.3 梯度下降和随机梯度下降的优缺点对比
      • 2.3.1 梯度下降算法(Batch Gradient Descent)
      • 2.3.2 随机梯度下降算法(Stochastic Gradient Descent)
  • 三、小批量梯度下降(Mini-batch Gradient Descent)
    • 3.1 优势
    • 3.2缺点
    • 3.3 代码实现
  • 总结

一、梯度下降

1.1 公式与原理

1.1.1 cost(w)

cost为数据集中所有样本的误差值平方再求均值。

在这里插入图片描述

1.1.2 梯度

计算梯度时为所有样本的梯度。一个样本的梯度为: g r a d i = 2 ∗ x i ∗ ( x i ∗ w i − y i ) grad_i = 2*x_i*(x_i*w_i-y_i) gradi=2xi(xiwiyi),所有样本的梯度为所有样本的 g r a d i grad_i gradi的和求平均。
在这里插入图片描述

1.1.3 w的更新

一个epoch中:w会等到中所有的x和y都计算完平均值之后再更新。

1.2 训练过程可视化

一般正常的训练过程中cost function都是一直在波动中下降的,如果出现了cost先下降到最小然后又上升的情况(抛物线),则说明训练失败,一般的原因是因为学习率设置过大。

在这里插入图片描述

1.3 代码实现

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w=1.0def forward(x):return x*wdef cost(xs,ys):cost = 0for x,y in zip(xs,ys):y_pred = forward(x)cost += (y_pred - y) ** 2return cost/len(xs)def gradient(xs,ys):grad = 0for x,y in zip(xs,ys):grad+= 2*x*(x*w-y)return grad/len(xs)w_list = []
cost_list = []
w_list.append(0.1)
for epoch in range(101):cost_val = cost(x_data,y_data)grad_val = gradient(x_data,y_data)w-=0.01*grad_valw_list.append(w)cost_list.append(cost_val)print('Epoch:',epoch,'w=',w,'loss',cost_val)plt.plot(range(101),cost_list)
plt.xlabel('epoch')
plt.ylabel('cost')
plt.show()

在这里插入图片描述
在这里插入图片描述

二、随机梯度下降(stochastic gradient descent,SDG)

2.1 公式与原理

随机梯度下降:从样本中随机抽出一组x和y,训练后按梯度更新一次,然后再抽取一组,再更新一次。

在这里插入图片描述

2.1.1 w的更新

计算一次 x i x_i xi y i y_i yi的梯度就进行一次参数更新。

一个epoch中:要进行样本个数次的参数更新

2.2 代码实现

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w=1.0def forward(x):return x*wdef loss(x,y):return (forward(x)-y)**2def grad(x,y):return 2 * x * (x * w - y)loss_list = []
for epoch in range(101):for x,y in zip(x_data,y_data):w -= 0.01*grad(x,y)l = loss(x,y)loss_list.append(l)print("epoch=",epoch,"w=",w,"loss=",loss)plt.plot(range(101),loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()

在这里插入图片描述
在这里插入图片描述

2.3 梯度下降和随机梯度下降的优缺点对比

2.3.1 梯度下降算法(Batch Gradient Descent)

优点:

收敛性较好: 梯度下降在每次迭代中使用整个训练集计算梯度,通常能够更快地收敛到较好的解;
稳定性高: 由于使用整个训练集计算梯度,梯度下降的更新方向相对稳定,能够更稳定地接近最优解;
可并行化: 由于每次迭代使用整个训练集,梯度下降可以更容易地进行并行化计算,加快训练速度。

缺点:

内存消耗大: 梯度下降需要在内存中保存整个训练集,对于大规模数据集来说,内存消耗较大;
计算代价高: 每次迭代都需要计算整个训练集的梯度,对于大规模数据集和复杂模型,计算代价较高;
容易陷入局部最优解:梯度下降可能会陷入局部最优解,特别是在非凸优化问题中。

2.3.2 随机梯度下降算法(Stochastic Gradient Descent)

优点:

计算代价低: 随机梯度下降每次迭代只使用一个样本计算梯度,因此计算代价较低;
内存消耗小:由于只需要一个样本,随机梯度下降的内存消耗相对较小;
可适用于在线学习:随机梯度下降适用于在线学习,可以动态地更新模型。

缺点:

收敛性相对较差: 由于梯度的随机性,随机梯度下降的收敛性较梯度下降差,可能会陷入波动或震荡;
不稳定:由于每次迭代只使用一个样本,随机梯度下降的更新方向相对不稳定,可能无法稳定地接近最优解;
学习率选择困难: 由于样本的随机性,随机梯度下降的学习率选择较为困难,需要进行合适的学习率调度。

三、小批量梯度下降(Mini-batch Gradient Descent)

结合BGD和SGD的优点,每一个epoch中取batchsize个样本进行梯度的更新。在每次迭代中随机均匀采样多个样本来组成一个小批量来计算梯度,一个epoch周期内会进行(样本数目/批量大小)次的参数更新。

3.1 优势

小批量梯度下降(Mini-batch Gradient Descent)是梯度下降和随机梯度下降的一种折衷方案,它同时具有一些梯度下降和随机梯度下降的优势,主要包括以下几点优势:

  1. 较低的方差:相比于随机梯度下降,小批量梯度下降使用一小批样本来计算梯度,因此梯度估计的方差较低。 这使得小批量梯度下降相对更稳定,收敛性更好,并且可以更快地接近最优解。

  2. 较高的计算效率:相比于梯度下降,小批量梯度下降每次迭代只使用一小批样本计算梯度,因此计算代价较低。这使得小批量梯度下降在处理大规模数据集时更具优势,能够更快地完成一轮迭代。

  3. 更好的泛化性能:由于小批量梯度下降使用了一小批样本的信息,在每次迭代中能够更好地反映训练集的整体特点。这使得小批量梯度下降相对于随机梯度下降在一定程度上具有更好的泛化性能,可以得到更好的模型。

  4. 并行化能力:小批量梯度下降的计算可以进行一定程度的并行化处理。由于每次迭代使用了一小批样本,可以将这些样本分配给不同的计算单元进行计算,从而提高训练速度。

3.2缺点

与梯度下降相比,由于每次迭代只使用了一小批样本,可能会引入一些噪声,导致更新方向相对不稳定。

小批量梯度下降需要选择合适的批大小,过小的批大小可能导致收敛速度变慢,而过大的批大小可能会增加计算代价和内存消耗。

3.3 代码实现

import numpy as np
import matplotlib.pyplot as pltx_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w=1.0
n=2
x_data_n = x_data[0:2]
y_data_n = y_data[0:2]def forward(x):return x*wdef loss(x1,y1,n):loss = 0for x,y in zip(x1,y1):loss += (forward(x)-y)**2return loss/ndef grad(x1,y1,n):grad = 0for x, y in zip(x1, y1):grad += 2*x*(x*w-y)return grad/nloss_list = []for epoch in range(101):w-=0.01*grad(x_data_n,y_data_n,n)loss_list.append(loss(x_data_n,y_data_n,n))print("epoch=",epoch,"w=",w,"loss=",loss)plt.plot(range(101),loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()

在这里插入图片描述
在这里插入图片描述

总结

现在多使用小批量随机梯度下降算法来进行梯度的更新。

这篇关于pytorch深度学习实践(二):梯度下降算法详解和代码实现(梯度下降、随机梯度下降、小批量梯度下降的对比)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/290733

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详