【Python量化】手把手教你用python做股票分析入门

2023-10-25 04:30

本文主要是介绍【Python量化】手把手教你用python做股票分析入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容来自:微信公众号:python金融量化
关注可了解更多的金融与Python干货。

目前,获取股票数据的渠道有很多,而且基本上是免费的,比如,行情软件有同花顺、东方财富等,门户网站有新浪财经、腾讯财经、和讯网等。Python也有不少免费的开源api可以获取交易行情数据,如pandas自带的库,tushare和baostock等。由于pandas库不再支持yahoo数据库后变得很不好用,而baostock最早记录的数据是2006年,因此本文主要讲讲如何使用tushare获取股票交易数据和可视化分析,tushare基本上记录了股票自上市之日起所有的日交易数据,是目前分析国内A股(支持其他非股票行情数据,如期货)比较好用的开源接口。

获取股票数据
01
使用tushare包的get_k_data()函数来获取股票交易数据,具体可以通过命令help(ts.get_k_data)了解函数和参数含义。

#先引入后面可能用到的包(package)
import pandas as pd  
import numpy as np
import matplotlib.pyplot as plt
#正常显示画图时出现的中文
from pylab import mpl
#这里使用微软雅黑字体
mpl.rcParams['font.sans-serif']=['SimHei']
#画图时显示负号
mpl.rcParams['axes.unicode_minus']=False
import seaborn as sns  #画图用的
import tushare as ts
#Jupyter Notebook特有的magic命令
#直接在行内显示图形
%matplotlib inline    

02
小试牛刀:获取上证指数自发布以来的数据

sh=ts.get_k_data(code='sh',ktype='D',autype='qfq', start='1990-12-20')
#code:股票代码,个股主要使用代码,如‘600000’
#ktype:'D':日数据;‘m’:月数据,‘Y’:年数据
#autype:复权选择,默认‘qfq’前复权
#start:起始时间
#end:默认当前时间
#查看下数据前5行
sh.head(5)

能看到的第一列是索引,对于pandas的数据结构,最后将索引设置为时间序列,方便后面可视化分析。

#将数据列表中的第0列'date'设置为索引
sh.index=pd.to_datetime(sh.date) 
#画出上证指数收盘价的走势
sh['close'].plot(figsize=(12,6))
plt.title('上证指数1990-2018年走势图')
plt.xlabel('日期')
plt.show()

在这里插入图片描述
上面的指数走势图还是可以清晰看出,股指分别在2007年和2015年有两波大牛市,然后又从高峰跌入谷底,目前处于下跌通道。真是辛辛苦苦28年,一夜回到解放前o(╥﹏╥)o

描述性统计

#pandas的describe()函数提供了数据的描述性统计
#count:数据样本,mean:均值,std:标准差
sh.describe().round(2)

结果如下表所示:
在这里插入图片描述

从上述结果可以看出,上证指数从1990年12月20日至2018年11月7日(最后交易日是当前运行时间),一共有6645个样本,均值为1937.52点,标准差为1079.51点(波动还是比较大的),最大值是6092.06点。

#再查看下每日成交量 
#2006年市场容量小,交易量比较小,我们从2007年开始看
sh.loc["2007-01-01":]["volume"].plot(figsize=(12,6))
plt.title('上证指数2007-2018年日成交量图')
plt.xlabel('日期')
plt.show()

在这里插入图片描述
上图的成交量反映了一个有趣的现象,2014-2015年的大牛市很可能是天量的交易推动起来的,因为这期间实体经济并不景气,央行多次降息降准,货币宽松,资金流入股市,银行理财等影子银行在这期间疯狂扩张,场外加杠杆和配资主导了这一场牛市。感兴趣的朋友可以结合货币供给、实体经济指标、影子银行等数据一起分析,进行交叉验证。

均线分析

#这里的平均线是通过自定义函数,手动设置20,52,252日均线
#移动平均线:
ma_day = [20,52,252]for ma in ma_day:column_name = "%s日均线" %(str(ma))sh[column_name] =sh["close"].rolling(ma).mean()
#sh.tail(3)
#画出2010年以来收盘价和均线图
sh.loc['2010-10-8':][["close",
"20日均线","52日均线","252日均线"]].plot(figsize=(12,6))
plt.title('2010-2018上证指数走势图')
plt.xlabel('日期')
plt.show()

在这里插入图片描述

日收益率可视化

#2005年之前的数据噪音太大,主要分析2005年之后的
sh["日收益率"] = sh["close"].pct_change()
sh["日收益率"].loc['2005-01-01':].plot(figsize=(12,4))
plt.xlabel('日期')
plt.ylabel('收益率')
plt.title('2005-2018年上证指数日收益率')
plt.show()

在这里插入图片描述

###这里我们改变一下线条的类型
#(linestyle)以及加一些标记(marker)
sh["日收益率"].loc['2014-01-01':].plot(figsize=
(12,4),linestyle="--",marker="o",color="g")
plt.title('2014-2018年日收益率图')
plt.xlabel('日期')
plt.show()

在这里插入图片描述

分析多只股票(指数)

#分析下常见的几个股票指数
stocks={'上证指数':'sh','深证指数':'sz','沪深300':'hs300','上证50':'sz50','中小板指':'zxb','创业板':'cyb'}
stock_index=pd.DataFrame()
for stock in stocks.values():stock_index[stock]=ts.get_k_data(stock,ktype='D', 
autype='qfq', start='2005-01-01')['close']
#stock_index.head()
#计算这些股票指数每日涨跌幅
tech_rets = stock_index.pct_change()[1:]
#tech_rets.head()
#收益率描述性统计
tech_rets.describe()
#结果不在此报告
#均值其实都大于0
tech_rets.mean()*100 #转换为%

对上述股票指数之间的相关性进行可视化分析:


#jointplot这个函数可以画出两个指数的”相关性系数“,或者说皮尔森相关系数
sns.jointplot('sh','sz',data=tech_rets)

在这里插入图片描述

#成对的比较不同数据集之间的相关性,
#而对角线则会显示该数据集的直方图sns.pairplot(tech_rets.iloc[:,3:].dropna())

在这里插入图片描述


returns_fig = sns.PairGrid(tech_rets.iloc[:,3:].dropna())
###右上角画散点图
returns_fig.map_upper(plt.scatter,color="purple") 
###左下角画核密度图 
returns_fig.map_lower(sns.kdeplot,cmap="cool_d") 
###对角线的直方图 
returns_fig.map_diag(plt.hist,bins=30)

在这里插入图片描述
收益率与风险
使用均值和标准分别刻画股票(指数)的收益率和波动率,对比分析不同股票(指数)的收益-风险情况。

#构建一个计算股票收益率和标准差的函数
#默认起始时间为'2005-01-01'
def return_risk(stocks,startdate='2005-01-01'):close=pd.DataFrame()for stock in stocks.values():close[stock]=ts.get_k_data(stock,ktype='D', autype='qfq', start=startdate)['close']tech_rets = close.pct_change()[1:]rets = tech_rets.dropna()ret_mean=rets.mean()*100ret_std=rets.std()*100return ret_mean,ret_std#画图函数
def plot_return_risk():ret,vol=return_risk(stocks)color=np.array([ 0.18, 0.96, 0.75, 0.3, 0.9,0.5])plt.scatter(ret, vol, marker = 'o', c=color,s = 500,cmap=plt.get_cmap('Spectral'))plt.xlabel("日收益率均值%")     plt.ylabel("标准差%")for label,x,y in zip(stocks.keys(),ret,vol):plt.annotate(label,xy = (x,y),xytext = (20,20),textcoords = "offset points",ha = "right",va = "bottom",bbox = dict(boxstyle = 'round,pad=0.5',fc = 'yellow', alpha = 0.5),arrowprops = dict(arrowstyle = "->",connectionstyle = "arc3,rad=0"))
stocks={'上证指数':'sh','深证指数':'sz','沪深300':'hs300','上证50':'sz50','中小板指数':'zxb','创业板指数':'cyb'}
plot_return_risk()

在这里插入图片描述

stocks={'中国平安':'601318','格力电器':'000651','招商银行':'600036','恒生电子':'600570','中信证券':'600030','贵州茅台':'600519'}
startdate='2018-01-01'
plot_return_risk()

在这里插入图片描述

蒙特卡洛模拟分析
蒙特卡洛模拟是一种统计学方法,用来模拟数据的演变趋势。蒙特卡洛模拟是在二战期间,当时在原子弹研制的项目中,为了模拟裂变物质的中子随机扩散现象,由美国数学家冯·诺伊曼和乌拉姆等发明的一种统计方法。之所以起名叫蒙特卡洛模拟,是因为蒙特卡洛在是欧洲袖珍国家摩纳哥一个城市,这个城市在当时是非常著名的一个赌城。因为赌博的本质是算概率,而蒙特卡洛模拟正是以概率为基础的一种方法,所以用赌城的名字为这种方法命名。蒙特卡洛模拟每次输入都随机选择输入值,通过大量的模拟,最终得出一个累计概率分布图。

df=ts.get_k_data('sh',ktype='D', autype='qfq', start='2005-01-01')
df.index=pd.to_datetime(df.date)
tech_rets = df.close.pct_change()[1:]
rets = tech_rets.dropna()
#rets.head()
#下面的结果说明,我们95%的置信,一天我们不会损失超过0.0264...
rets.quantile(0.05)
-0.026496813699825043

构建蒙特卡洛模拟函数:

def monte_carlo(start_price,days,mu,sigma):dt=1/daysprice = np.zeros(days)price[0] = start_priceshock = np.zeros(days)drift = np.zeros(days)for x in range(1,days):shock[x] = np.random.normal(loc=mu * dt,scale=sigma * np.sqrt(dt))drift[x] = mu * dtprice[x] = price[x-1] + (price[x-1] *(drift[x] + shock[x]))return price
#模拟次数
runs = 10000
start_price = 2641.34 #今日收盘价
days = 252
mu=rets.mean()
sigma=rets.std()
simulations = np.zeros(runs)for run in range(runs):simulations[run] = monte_carlo(start_price,days,mu,sigma)[days-1]
q = np.percentile(simulations,1)
plt.figure(figsize=(8,6))
plt.hist(simulations,bins=50,color='grey')
plt.figtext(0.6,0.8,s="初始价格: %.2f" % start_price)
plt.figtext(0.6,0.7,"预期价格均值: %.2f" %simulations.mean())
plt.figtext(0.15,0.6,"q(0.99: %.2f)" %q)
plt.axvline(x=q,linewidth=6,color="r")
plt.title("经过 %s 天后上证指数模拟价格分布图" %days,weight="bold")
Text(0.5,1,'经过 252 天后上证指数模拟价格分布图')

在这里插入图片描述

实际上蒙特卡洛模拟在期权定价里面还是很有用的。我们借用期权定价里对未来股票走势的假定来进行蒙特卡洛模拟。

import numpy as np
from time import time
np.random.seed(2018)
t0=time()
S0=2641.34
T=1.0; 
r=0.05; 
sigma=rets.std()
M=50;
dt=T/M; 
I=250000
S=np.zeros((M+1,I))
S[0]=S0
for t in range(1,M+1):z=np.random.standard_normal(I)S[t]=S[t-1]*np.exp((r-0.5*sigma**2)*dt+sigma*np.sqrt(dt)*z)
s_m=np.sum(S[-1])/I
tnp1=time()-t0
print('经过250000次模拟,得出1年以后上证指数的预期平均收盘价为:%.2f'%s_m)
经过250000次模拟,得出1年以后上证指数的预期平均收盘价为:2776.85
%matplotlib inline
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
plt.plot(S[:,:10])
plt.grid(True)
plt.title('上证指数蒙特卡洛模拟其中10条模拟路径图')
plt.xlabel('时间')
plt.ylabel('指数')
plt.show()

在这里插入图片描述

plt.figure(figsize=(10,6))
plt.hist(S[-1], bins=120)
plt.grid(True)
plt.xlabel('指数水平')
plt.ylabel('频率')
plt.title('上证指数蒙特卡洛模拟')
Text(0.5,1,'上证指数蒙特卡洛模拟')

在这里插入图片描述

THE END

本文主要介绍了如何使用Python获取股票数据,并进行简单的统计分析和可视化,综合运用了Python金融量化分析的Pandas、NumPy和Matplotlib等包。目前,A股处于至暗时刻,或许是学习和历练的最好时机,涅槃重生的过程总是艰难的,但振翅飞翔的一刻值得你等待。

这篇关于【Python量化】手把手教你用python做股票分析入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/280006

相关文章

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚