LIRe图像检索:Tamura纹理特征算法源码分析

2023-10-23 19:51

本文主要是介绍LIRe图像检索:Tamura纹理特征算法源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 Tamura概述

Tamura纹理特征包括了粗糙度(coarseness)、对比度(contrast)、方向度(directionality)、线性度(linelikeness)、规则度(regularity)、粗略度(roughness)。最原始的Tamura论文有《Textural Features Correspondingto Visual Perception》。Tamura纹理特征要比灰度共生矩阵得到的纹理特征更直观,在视觉效果上更有优势。LIRe实现了Tamura纹理特征,包括粗糙度、对比度和方向。

2 源码分析

在lire.jar中Tamura源码的位置如下:


以下为我对源码的分析和解读。

public class Tamura implements GlobalFeature {private static final int MAX_IMG_HEIGHT = 64;private int[][] grayScales;private int imgWidth;private int imgHeight;private double[] histogram;private static final double[][] filterH = new double[][]{{-1.0D, 0.0D, 1.0D}, {-1.0D, 0.0D, 1.0D}, {-1.0D, 0.0D, 1.0D}};private static final double[][] filterV = new double[][]{{-1.0D, -1.0D, -1.0D}, {0.0D, 0.0D, 0.0D}, {1.0D, 1.0D, 1.0D}};private static final String TAMURA_NAME = "tamura";public Tamura() {}//第一个指标coarseness 粗糙度public double coarseness(int n0, int n1) {double result = 0.0D;for(int i = 1; i < n0 - 1; ++i) {for(int j = 1; j < n1 - 1; ++j) {result += Math.pow(2.0D, (double)this.sizeLeadDiffValue(i, j));}}result = 1.0D / (double)(n0 * n1) * result;return result;}public double averageOverNeighborhoods(int x, int y, int k) {double result = 0.0D;double border = Math.pow(2.0D, (double)(2 * k));boolean x0 = false;boolean y0 = false;for(int i = 0; (double)i < border; ++i) {for(int j = 0; (double)j < border; ++j) {int var12 = x - (int)Math.pow(2.0D, (double)(k - 1)) + i;int var13 = y - (int)Math.pow(2.0D, (double)(k - 1)) + j;if(var12 < 0) {var12 = 0;}if(var13 < 0) {var13 = 0;}if(var12 >= this.imgWidth) {var12 = this.imgWidth - 1;}if(var13 >= this.imgHeight) {var13 = this.imgHeight - 1;}result += (double)this.grayScales[var12][var13];}}result = 1.0D / Math.pow(2.0D, (double)(2 * k)) * result;return result;}public double differencesBetweenNeighborhoodsHorizontal(int x, int y, int k) {double result = 0.0D;result = Math.abs(this.averageOverNeighborhoods(x + (int)Math.pow(2.0D, (double)(k - 1)), y, k) - this.averageOverNeighborhoods(x - (int)Math.pow(2.0D, (double)(k - 1)), y, k));return result;}public double differencesBetweenNeighborhoodsVertical(int x, int y, int k) {double result = 0.0D;result = Math.abs(this.averageOverNeighborhoods(x, y + (int)Math.pow(2.0D, (double)(k - 1)), k) - this.averageOverNeighborhoods(x, y - (int)Math.pow(2.0D, (double)(k - 1)), k));return result;}public int sizeLeadDiffValue(int x, int y) {double result = 0.0D;int maxK = 1;for(int k = 0; k < 3; ++k) {double tmp = Math.max(this.differencesBetweenNeighborhoodsHorizontal(x, y, k), this.differencesBetweenNeighborhoodsVertical(x, y, k));if(result < tmp) {maxK = k;result = tmp;}}return maxK;}//第二个指标Contrast,对比度public double contrast() {double result = 0.0D;double my4 = 0.0D;double alpha4 = 0.0D;double my = this.calculateMy();double sigma = this.calculateSigma(my);if(sigma <= 0.0D) {return 0.0D;} else {for(int x = 0; x < this.imgWidth; ++x) {for(int y = 0; y < this.imgHeight; ++y) {my4 += Math.pow((double)this.grayScales[x][y] - my, 4.0D);}}alpha4 = my4 / Math.pow(sigma, 4.0D);result = sigma / Math.pow(alpha4, 0.25D);return result;}}public double calculateMy() {double mean = 0.0D;for(int x = 0; x < this.imgWidth; ++x) {for(int y = 0; y < this.imgHeight; ++y) {mean += (double)this.grayScales[x][y];}}mean /= (double)(this.imgWidth * this.imgHeight);return mean;}public double calculateSigma(double mean) {double result = 0.0D;for(int x = 0; x < this.imgWidth; ++x) {for(int y = 0; y < this.imgHeight; ++y) {result += Math.pow((double)this.grayScales[x][y] - mean, 2.0D);}}result /= (double)(this.imgWidth * this.imgHeight);return Math.sqrt(result);}//第三个指标 Directionality,方向度public double[] directionality() {double[] histogram = new double[16];double maxResult = 3.0D;double binWindow = maxResult / (double)(histogram.length - 1);boolean bin = true;for(int x = 1; x < this.imgWidth - 1; ++x) {for(int y = 1; y < this.imgHeight - 1; ++y) {int var9 = (int)((1.5707963267948966D + Math.atan(this.calculateDeltaV(x, y) / this.calculateDeltaH(x, y))) / binWindow);++histogram[var9];}}return histogram;}public double calculateDeltaH(int x, int y) {double result = 0.0D;for(int i = 0; i < 3; ++i) {for(int j = 0; j < 3; ++j) {result += (double)this.grayScales[x - 1 + i][y - 1 + j] * filterH[i][j];}}return result;}public double calculateDeltaV(int x, int y) {double result = 0.0D;for(int i = 0; i < 3; ++i) {for(int j = 0; j < 3; ++j) {result += (double)this.grayScales[x - 1 + i][y - 1 + j] * filterV[i][j];}}return result;}public double getDistance(double[] targetFeature, double[] queryFeature) {double result = 0.0D;for(int i = 2; i < targetFeature.length; ++i) {result += Math.pow(targetFeature[i] - queryFeature[i], 2.0D);}return result;}public void extract(BufferedImage image) {this.histogram = new double[18];ColorConvertOp op = new ColorConvertOp(image.getColorModel().getColorSpace(), ColorSpace.getInstance(1003), new RenderingHints(RenderingHints.KEY_COLOR_RENDERING, RenderingHints.VALUE_COLOR_RENDER_QUALITY));BufferedImage bimg = op.filter(image, (BufferedImage)null);bimg = ImageUtils.scaleImage(bimg, 64);WritableRaster raster = bimg.getRaster();int[] tmp = new int[3];this.grayScales = new int[raster.getWidth()][raster.getHeight()];int i;for(i = 0; i < raster.getWidth(); ++i) {for(int j = 0; j < raster.getHeight(); ++j) {raster.getPixel(i, j, tmp);this.grayScales[i][j] = tmp[0];}}this.imgWidth = bimg.getWidth();this.imgHeight = bimg.getHeight();//第一个指标 Coarseness,粗糙度this.histogram[0] = this.coarseness(bimg.getWidth(), bimg.getHeight());//第二个指标 Contrast,对比度this.histogram[1] = this.contrast();//第三个指标 Directionality,方向度double[] directionality = this.directionality();for(i = 2; i < this.histogram.length; ++i) {this.histogram[i] = directionality[i - 2];}}public byte[] getByteArrayRepresentation() {return SerializationUtils.toByteArray(this.histogram);}public void setByteArrayRepresentation(byte[] in) {this.histogram = SerializationUtils.toDoubleArray(in);}public void setByteArrayRepresentation(byte[] in, int offset, int length) {this.histogram = SerializationUtils.toDoubleArray(in, offset, length);}public double[] getFeatureVector() {return this.histogram;}public double getDistance(LireFeature feature) {if(!(feature instanceof Tamura)) {throw new UnsupportedOperationException("Wrong descriptor.");} else {Tamura tamura = (Tamura)feature;return this.getDistance(tamura.histogram, this.histogram);}}public String getFeatureName() {return "Tamura Features";}public String getFieldName() {return "TAMURA";}
}
Reference:

http://blog.sina.com.cn/s/blog_5ae7a1de01012r03.html

http://blog.csdn.net/jzwong/article/details/51584535


这篇关于LIRe图像检索:Tamura纹理特征算法源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/270106

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原