从算法角度分析随机播放歌曲真的是随机的吗?

2023-10-22 23:40

本文主要是介绍从算法角度分析随机播放歌曲真的是随机的吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

漫小画

擅长漫话

程小员

擅长编程

周末,开车带女朋友出去玩,车里面,随机播放着周杰伦的歌曲。我正沉浸在『得儿飘,得儿飘,得儿意的飘』中,幻想着自己是秋名山车神,突然,旁边的豆腐,哦不,女朋友说话了。

诶,你车上的歌曲是随机播放的吗?

640?wx_fmt=png

是啊

640?wx_fmt=png

那为什么听来听去反反复复都是那么几首歌在重复啊。 

640?wx_fmt=png

嗯,音乐随机播放用的是伪随机算法呗。

640?wx_fmt=png

伪随机性(英语:Pseudorandomness)是一个过程似乎是随机的,但实际上并不是。伪随机数是看似随机实质是固定的周期性序列,也就是有规则的随机。

又拽概念了,你给我详细讲讲吧。

640?wx_fmt=png

好的,等到了前面的服务区,我给你讲讲。

640?wx_fmt=png

什么是随机数

随机数在计算机应用中使用的比较广泛,最为熟知的便是在密码学中的应用。随机数有3个特性,具体如下:

随机性:不存在统计学偏差,是完全杂乱的数列

不可预测性:不能从过去的数列推测出下一个出现的数

不可重现性:除非将数列本身保存下来,否则不能重现相同的数列

音乐播放器的随机播放如何实现的

现在的音乐播放器都比较智能了,都带有一些类似于歌曲推荐的功能,会给听众随机推荐歌曲,这种是基于用户听歌习惯的随机推荐,不在我们讨论的范围内。我们只讨论那种简单的,比如使用简单的播放器随机播放一个CD卡中的列表的情况。

常见的音乐随机播放算法有两种,分别是Random算法和Shuffle算法。

Random算法

Random算法相对比较简单,播放当前歌曲时才随机生成下一曲。

Random算法是在选取即将播放的歌曲时,进行一个随机数的运算,得到即将播放的歌曲在播放列表中的索引,播放列表本身并没有被打乱,只是利用随机函数从播放列表中选取一首歌曲进行播放而已。

可以使用Java语言实现这种Random随机数算法:

Calendar ca = Calendar.getInstance();//获取系统当前时间
int i;
Random rand =new Random(ca.get(Calendar.MINUTE)*ca.get(Calendar.SECOND));//将随机数的种子设置为当前系统时间的分*秒
i=rand.nextInt(maxnum);//maxnum是随机数最大不超过得值

Random算法另一个缺陷是当点击“上一曲”时,跟“下一曲”功能完全一样,都是重新生成随机数,并利用它从播放列表中选取歌曲进行播放,而不会回到刚刚播放的那一首歌。

这种方法不好,都没办法找到上一首了。

640?wx_fmt=png

其实也有解决办法,比如提供个历史纪录来弥补。

640?wx_fmt=png

太麻烦了吧。还有另外的算法吗?

640?wx_fmt=png

有的,那就是洗牌算法。

640?wx_fmt=png

Shuffle算法

Shuffle算法和排序算法正好相反,是从有序到乱序的一个过程,俗称洗牌算法。

它将播放列表中的歌曲顺序打乱,变成一个和原来歌曲顺序没有任何关系的乱序的播放列表,之后进行歌曲的播放,并支持当用户点击“上一首”时,能够回到刚刚播放的那一首歌曲。

这种算法相对于Random算法来说,并不是完全意义上的随机,只不过是对歌曲列表的乱序而已,歌曲的播放顺序还是相对固定的。

在Java中,有现成的shuffle算法实现,即Collections类中的两个重载的shuffle方法:

public static void shuffle(List<?> list) {Random rnd = r;if (rnd == null)r = rnd = new Random();shuffle(list, rnd);
}
private static Random r;public static void shuffle(List<?> list, Random rnd) {int size = list.size();if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {for (int i=size; i>1; i--)swap(list, i-1, rnd.nextInt(i));} else {Object arr[] = list.toArray();// Shuffle arrayfor (int i=size; i>1; i--)swap(arr, i-1, rnd.nextInt(i));// Dump array back into listListIterator it = list.listIterator();for (int i=0; i<arr.length; i++) {it.next();it.set(arr[i]);}}
}

哦,那我们的播放器应该是使用Shuffle实现的吧。

640?wx_fmt=png

嗯,我们每次听的歌曲顺序几乎都一致,表现上比较像。

640?wx_fmt=png

那我们这个就是伪随机,如果使用Random就是真随机了。

640?wx_fmt=png

不是的。这是不同的概念。

640?wx_fmt=png

真随机与伪随机

随机数分为真随机数和伪随机数,我们程序使用的基本都是伪随机数,其中伪随机又分为强伪随机数和弱伪随机数。

  • 真随机数,通过物理实验得出,比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等。需要满足随机性、不可预测性、不可重现性。

  • 伪随机数,通过一定算法和种子得出。软件实现的是伪随机数。

    • 强伪随机数,难以预测的随机数。需要满足随机性和不可预测性。

    • 弱伪随机数,易于预测的随机数。需要满足随机性。

上面介绍Random算法和Shuffle算法的时候,代码实现都是伪随机算法。可以这样说:

只要这个随机数是由确定算法生成的,那就是伪随机。只能通过不断算法优化,使你的随机数更接近随机。

有限状态机不能产生真正的随机数的,所以,现代计算机中,无法通过一个纯算法来生成真正的随机数,无论是哪种语言,单纯的算法生成的数字都是伪随机数,都是由可确定的函数通过一个种子,产生的伪随机数。

这也就意味着,如果知道了种子,就可以推断接下来的随机数序列的信息。这就有了可预测性。

那么真随机数怎么产生的呢?

通过真实随机事件取得的随机数才是真随机数。

真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。这样的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高,效率低。

现有的真随机数生成器,比如PuTTYgen的随机数是让用户移动鼠标达到一定的长度,之后把鼠标的运动轨迹转化为种子;Intel通过电阻和振荡器来生成热噪声作为信息熵资源;Unix/Linux的dev/random和/dev/urandom采用硬件噪音生成随机数;

所以,要想生成真的随机数,是无法用任何一个纯算法实现的。都需要借助外部物理现象。

啊?这也太难了吧,想要生成个随机数,竟然还要懂物理学。

640?wx_fmt=png

是的。确定性的算法生成的随机数,至少都有可重现性。那就不是真随机数了。

640?wx_fmt=png

那你们平时工作重要使用随机数怎么办啊?

640?wx_fmt=png

这就要看场景了,一般使用伪随机数就可以解决问题了。

640?wx_fmt=png

Java中的随机数生成器

Java语言提供了几种随机数生成器,如前面提到的Random类,还有SecureRandom类。

伪随机数生成器

伪随机数发生器采用特定的算法,将随机数种子seed转换成一系列的伪随机数。伪随机数依赖于seed的值,给定相同的seed值总是生成相同的随机数。伪随机数的生成过程只依赖CPU,不依赖任何外部设备,生成速度快,不会阻塞。

Java提供的伪随机数发生器有java.util.Random类和java.util.concurrent.ThreadLocalRandom类。

Random类采用AtomicLong实现,保证多线程的线程安全性,但正如该类注释上说明的,多线程并发获取随机数时性能较差。

多线程环境中可以使用ThreadLocalRandom作为随机数发生器,ThreadLocalRandom采用了线程局部变量来改善性能,这样就可以使用long而不是AtomicLong,此外,ThreadLocalRandom还进行了字节填充,以避免伪共享。

强随机数发生器

强随机数发生器依赖于操作系统底层提供的随机事件。强随机数生成器的初始化速度和生成速度都较慢,而且由于需要一定的熵累积才能生成足够强度的随机数,所以可能会造成阻塞。熵累积通常来源于多个随机事件源,如敲击键盘的时间间隔,移动鼠标的距离与间隔,特定中断的时间间隔等。所以,只有在需要生成加密性强的随机数据的时候才用它。

Java提供的强随机数发生器是java.security.SecureRandom类,该类也是一个线程安全类,使用synchronize方法保证线程安全,但jdk并没有做出承诺在将来改变SecureRandom的线程安全性。因此,同Random一样,在高并发的多线程环境中可能会有性能问题。

在linux的实现中,可以使用/dev/random/dev/urandom作为随机事件源。由于/dev/random是堵塞的,在读取随机数的时候,当熵池值为空的时候会堵塞影响性能,尤其是系统大并发的生成随机数的时候。

真随机数发生器

在Linux系统中,SecureRandom的实现借助了/dev/random/dev/urandom,可以使用硬件噪音生成随机数;

http://random.org/,从1998年开始提供在线真随机数服务了,它用大气噪音生成真随机数。他也提供了Java工具类,可以拿来使用。地址:https://sourceforge.net/projects/randomjapi/

奥,我好像懂了。真随机数生成要求太高了。所以一般都是用伪随机数。

640?wx_fmt=png

嗯嗯,是这样子的。

640?wx_fmt=png

可是,虽然我理解了,但是我还是希望歌曲的随机可以真随机怎么办呢?

640?wx_fmt=png

额。

640?wx_fmt=png

为了躲避这个看(wu)似(li)合(qu)理(nao)的问题,我拉着她回到车子,找了一首她最喜欢的《演员》单曲循环了。

640?

日常推荐

为什么我不建议你买保险?

今日问题

C语言的随机函数是rand()

那么srand的作用是什么?

打卡格式:打卡第n天,答:xxx

640?wx_fmt=png

这篇关于从算法角度分析随机播放歌曲真的是随机的吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/264317

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三