景联文科技语音数据标注:AUTO-AVSR模型和数据助力视听语音识别

本文主要是介绍景联文科技语音数据标注:AUTO-AVSR模型和数据助力视听语音识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ASR、VSR和AV-ASR的性能提高很大程度上归功于更大的模型和训练数据集的使用。

更大的模型具有更多的参数和更强大的表示能力,能够捕获到更多的语言特征和上下文信息,从而提高识别准确性;更大的训练集也能带来更好的性能,更多的数据可以提供更多的上下文信息,帮助模型更好地理解语音和视觉信号,减少噪声和干扰的影响。

AUTO-AVSR是一种自动标注辅助下的视听语音识别技术。它通过使用预训练的ASR模型自动转录未标记的视频数据,从而扩展音频-视觉数据以用于语音识别。

ASR(自动语音识别技术)主要是将语音信号转换为文本,它依赖于声音信号和语音特征来识别和理解人类语言。因此,ASR模型通常在语音到文本的转换方面训练和优化,以实现高精度的语音识别和文本标注。

ASR面临的一个重要问题是其对噪声的鲁棒性不足。尽管语音识别系统在无噪声环境下可以达到很高的识别精度,但在真实世界的各种应用中,背景噪声往往会对系统的性能产生显著影响。

而通过AVSR(视听语音识别)可以解决上述问题。VSR涉及视频中的语音和视觉信息的联合处理,旨在同时理解和处理语音和视觉信息。VSR模型通常利用视觉特征(如面部表情、口型变化等)和音频特征(语音内容)来理解视频中的语音内容。因此,VSR模型在处理视频中的语音时可以更准确地理解和处理口音、语速、音调等因素,从而为视频内容提供更精确的文本标注。

虽然ASR和VSR在处理的问题和应用场景上存在差异,但在某些情况下,ASR模型也可以为VSR提供更好的文本标注。例如,在一些场景中,语音信号可能比较嘈杂或模糊不清,使得VSR模型难以准确地识别和理解语音内容。在这种情况下,一个更精确的ASR模型可以帮助提取更准确的语音特征和文本标注,从而辅助VSR模型更好地理解和处理视频中的语音内容。

景联文科技是AI基础行业的头部数据供应商,可协助人工智能企业解决整个人工智能链条中数据标注环节的相对应问题。

景联文科技拥有丰富的语音数据采集标注项目经验,自建专业语音采集录音室,有高度还原真实场景能力,在全国30多个省市有近一万人的被采集人员储备,全球范围内也有采集渠道,支持多语种、多方言语音采集。自有的数据管理平台,支持语音工程:语音切割、ASR语音转写、语音情绪判定、声纹识别标注等,打通数据闭环,可有序进行数据分发、清洗、标注、质检、等环节,交付高质量的训练数据,提高企业AI数据训练效率,加速人工智能相关应用的落地迭代周期。

景联文科技|数据采集|数据标注

助力人工智能技术,赋能传统产业智能化转型升级

文章图文著作权归景联文科技所有,商业转载请联系景联文科技获得授权,非商业转载请注明出处。

这篇关于景联文科技语音数据标注:AUTO-AVSR模型和数据助力视听语音识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/262205

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

如何正确识别一台POE交换机的好坏? 选购可靠的POE交换机注意事项

《如何正确识别一台POE交换机的好坏?选购可靠的POE交换机注意事项》POE技术已经历多年发展,广泛应用于安防监控和无线覆盖等领域,需求量大,但质量参差不齐,市场上POE交换机的品牌繁多,如何正确识... 目录生产标识1. 必须包含的信息2. 劣质设备的常见问题供电标准1. 正规的 POE 标准2. 劣质设

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建