Pollard的rho启发式因子分解算法 [CodeVS 4939] 欧拉函数:Miller-Rabin + Pollard-rho 质因数分解

本文主要是介绍Pollard的rho启发式因子分解算法 [CodeVS 4939] 欧拉函数:Miller-Rabin + Pollard-rho 质因数分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pollard的rho启发式因子分解算法用于给出整数的一个因子。在一定的合理假设下,如果n有一个因子p,可在 O(p) 的期望时间内可找出n的一个因子p。

关于其复杂度,Wikipedia是这样叙述的:

If the pseudo random number x = g(x) occurring in the Pollard ρ algorithm were an actual random number, it would follow that success would be achieved half the time, by the Birthday paradox in O(p^(1/2)) ≤ O (n^(1/4)) iterations. It is believed that the same analysis applies as well to the actual rho algorithm, but this is a heuristic claim, and rigorous analysis of the algorithm remains open.

以下绝大部分来自《算法导论》。

Pollard-rho算法的核心是用递推式 xi+1=(x2i+c)modn 生成一个最终会进入循环的“随机”序列(表示成有向图,看起来就像ρ,这就是算法名字的由来)。虽然只显式地生成了一个序列,实际上同时生成了许多形如ρ的序列(后面将会推证);只要两个指针都进入某个ρ的圈圈里,把它们所指向的值作差,取绝对值,和n求gcd,就能得到n的一个因子。

伪代码如下:

Pollard-Rho(n, c)i = 1k = 2y = x = a random integer in [0, n)d = 1while d == 1i = i+1x = (x*x+c) mod nif x == yreturn nd = gcd(n, abs(x-y))if i == kk = k*2y = xreturn d

它的正确性是显然的。算法可能会失败地返回一个平凡因子n,也可能成功地返回一个n的某个非平凡因子。

xi+1=(x2i+c)modn 的循环大小为C,循环的第一项是 xt ,进入循环后的某一时刻,k会被赋予一个不小于C的值,此时的x被保存为y,再转一圈,y固定不动,x会回到y,算法以失败终止。

必有2的某次幂落在区间[t, 2t]内,因此在不超过第2t步,循环内的某个值将被保存。此时的k可能小于C,无妨,因为必有2的某次幂落在区间[C, 2C]内,2C步之内,有k不小于C成立。于是,至多走(2*min(t, C)+C)步,算法终止。这个算法叫Brent判圈算法(Brent’s cycle finding method),与Floyd判圈算法均为线性,但常数优于后者(至少3C次计算后继结点)。根据Wikipedia,Pollard的原始版本采用Floyd判圈算法,后来由Richard Brant用自己新发明的判圈算法加以改进。

设n有一个因子p,其实我们同时在计算 xi=ximodp ,并且递推式具有相同的形式:

xi+1=xi+1modp=(x2i+c)modnmodp=(x2i+c)modp=((ximodp)2+c)modp=(x2i+c)modp

同样是ρ形。循环内两个数作差,是p的倍数,和n取gcd,因子p或p的某倍便被呈现出来。与上面的论证类似,进入循环后不超过 t 步,循环内的某个值将被保存,下一步,p被呈现。显然 tt CC

假设 {xi} 是随机的,则 t C 都是 O(p) 的。

生日悖论:从n个数中可重复地随机选择k个,当 k2n 时,存在两数相等的概率大于1/2。

用数学期望描述这个命题:相等数对的数目不少于1。这样计算起来会简单一些。

1i<jk 定义指示器随机变量 Xij=I{ij} ,则 E[Xij]=1n

E[i=1kj=i+1kXij]=i=1kj=i+1kE[Xij]=i=1kj=i+1k1n=k(k1)2n

令上式 1 ,得到一个充分条件 k2n

把这个结论运用到我们的问题中来。 t=O(p) C=O(p)

至此,一切都看起来很美好。如果n有某个因子p,则 O(p) 左右次循环后,我们就能找到它。

然而,推导这一切的假设显然不成立。 {xi} 不是随机的。另外,存在这样一种可能:所有ρ的尺寸相同,这将导致只能找到平凡因子n;这种情况需要换一个参数c,《算法导论》告诉我们,除了0和2,其他数都是不错的选择。所以,本算法的名称有定语“启发式”。

CodeVS 4939 欧拉函数

这道题是mhb同学放到CodeVS上的Orz 据其本人所言,当时试除+卡常数,最终把数据范围开到这么变态……真是太神啦……题解页面中提到的qwertyu也很神,感谢Ta的代码。

结合Miller-Rabin、Pollard-rho两个算法可以进行质因数分解。如果n是素数,返回;否则,求n的一个非平凡因子d,递归。由于本题计算的是欧拉函数值,只需要知道有哪些质因子,而不需要知道每个质因子的指数,所以可以将n中的d全部除掉再递归。质因子的数目算上重复的也不超过 ceiling(log2n) ,所以数组不用开很大。

#include <cstdio>
#include <cstdlib>
#include <ctime>
#include <algorithm>
typedef long long ll;
const int s = 10, MAX_F = 70;
ll cnt, f[MAX_F];inline ll mul_mod(ll a, ll b, ll m)
{ll c = a*b-(ll)((long double)a*b/m+0.5)*m;return c<0 ? c+m : c;
}ll fast_exp(ll a, ll x, ll m)
{ll b = 1;while (x) {if (x & 1)b = mul_mod(b, a, m);a = mul_mod(a, a, m);x >>= 1;}return b;
}bool MR(ll n)
{if (!(n&1))return n == 2;ll t = 0, u;for (u = n-1; !(u&1); u >>= 1)++t;for (int i = 0; i < s; ++i) {ll a = rand()%(n-2)+2, x = fast_exp(a, u, n);for (ll j = 0, y; x != 1 && j < t; ++j, x = y) {y = mul_mod(x, x, n);if (y == 1 && x != n-1)return false;}if (x != 1)return false;}return true;
}inline ll abs(ll x)
{return x<0 ? -x : x;
}ll gcd(ll a, ll b)
{return b ? gcd(b, a%b) : a;
}ll PR(ll n, ll a)
{ll x = rand()%n, y = x, k = 1, i = 0, d = 1;while (d == 1) {if ((x = (mul_mod(x, x, n)+a)%n) == y)return n;d = gcd(n, abs(y-x));if (++i == k) {k <<= 1;y = x;}}return d;
}void decomp(ll n)
{if (n == 1)return;if (MR(n)) {f[cnt++] = n;return;}ll d = n, c = n-1;while (d == n)d = PR(n, c--);do {n /= d;} while (!(n%d));decomp(d);decomp(n);
}int main()
{srand(time(0));ll n;while (scanf("%lld", &n), n) {cnt = 0;decomp(n);std::sort(f, f+cnt);cnt = std::unique(f, f+cnt)-f;ll ans = n;for (int i = 0; i < cnt; ++i) {printf("%lld\n", f[i]);ans = ans/f[i]*(f[i]-1);}printf("%lld\n", ans);}return 0;
}

这篇关于Pollard的rho启发式因子分解算法 [CodeVS 4939] 欧拉函数:Miller-Rabin + Pollard-rho 质因数分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/249430

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C