【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 )

本文主要是介绍【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、最短路径
  • 二、图最短路径算法使用场景
  • 三、求解图中任意两个点之间的最短路径
  • 四、邻接矩阵存储图数据
  • 五、只允许经过 1 号点中转得到任意两点之间的最短路径
  • 六、在之前的基础上-只允许经过 1、2 号点中转得到任意两点之间的最短路径
  • 七、在之前的基础上-只允许经过 1、2 、...、n 号点中转得到任意两点之间的最短路径
  • 八、弗洛伊德算法总结

图的最短路径算法 : 有如下四种 ;

  • 弗洛伊德算法 Floyed ;
  • 迪杰斯特算法 Dijstra ;
  • 贝尔曼-弗洛伊德算法 Bellman-Floyed ;
  • SPFA 算法 Shortest Path Faster Algorithm ;

本篇博客介绍 弗洛伊德 算法 ;





一、最短路径



中 , 结点 之间的 边 带有权值 , 则该图就是 带权图 ;


边的 权值 可以理解为 两个结点 之间的 距离 或者 消耗时间 ,

从 结点 A 到 结点 B 有不同的路径 ,

将这些路径的 边 的 权值 相加 , 权值总和最小的路径 , 就是 最短路径 ;


举例说明 : 下图 中 , 求 C4 结点 到 C6 结点 的最短路径 ;
在这里插入图片描述

C4 结点 到 C6 结点的路径 :

  • C4 -> C6 : 权值累加总和为 9 ;
  • C4 -> C5 -> C6 : 权值累加总和为 8 ;
  • C4 -> C3 -> C5 -> C6 : 权值累加总和为 8 ;

其它的路径更远 , 可以看到其最短路径是 后两种 , 最短路径为 8 ;





二、图最短路径算法使用场景



图最短路径算法使用场景 :

  • 管道铺设
  • 线路安装
  • 地图规划




三、求解图中任意两个点之间的最短路径



在这里插入图片描述

假设图中有任意两个点 , A 点 和 B 点 ,

要令 A 到 B 之间的 距离 变短 , 只能 引入 第三个点 K , A 先到 K , 然后从 K 到 B ,

此时 A -> B 的路径 可能 小于 A -> K -> B 的路程 ;


中转点 的 个数 可能需要多个 , A 到 B 可能中间途径多个 中转点 , 使得 两个结点 之间的距离更短 ;


以上图为例 , 从 结点 4 到 结点 3 的直接距离为 12 ,

如果 找一个途经点 , 从 结点 4 先到 结点 1 , 然后从 结点 1 到 结点 3 , 最终的距离为 11 ;


如果 找 2 个途径点 , 节点 4 -> 结点 1 -> 结点 2 -> 结点 3 , 距离为 10 ;


每个顶点 都有可能 缩短 另外两个 顶点 之间的距离 ;





四、邻接矩阵存储图数据



使用 邻接矩阵 存储 下图信息 ;

在这里插入图片描述

下图中 使用 二维数组 int[][] edge 存储邻接矩阵 , 二维数组 元素的值为 两个点 之间的 边 的 权重 ;

如 : edge[1][2] 是 从 结点 1 到 结点 2 之间的 边 的权重 ;


邻接矩阵 取值 :

  • 两个结点之间存在边 : 邻接矩阵 取值 就是这个 边 的权重 ;
  • 两个结点之间不存在边 : 如果 没有可达 的边 , 如 结点 2 -> 结点 1 没有直达的边 , 则距离设置为 无穷大 ;
  • 结点到其本身的距离 : 约定为 0 ;

在这里插入图片描述





五、只允许经过 1 号点中转得到任意两点之间的最短路径



在上述 邻接矩阵 int[][] edge 中 , 求 结点 i 到 结点 j 之间的 最短路径 , 并且只允许从 结点 1 进行中转 ;

结点 i 到 结点 j 的距离为 edge[i][j] ,

结点 i 到 结点 1 的距离为 edge[i][1] , 结点 1 到 结点 j 的距离为 edge[1][j] , 其 总的距离为 edge[i][1] + edge[1][j] ,

如果 edge[i][1] + edge[1][j] < edge[i][j] , 则 结点 i 到 结点 j 之间的距离缩短了 , edge[i][1] + edge[1][j] 就是其当前的 最短路径 ;


// 只允许经过 1 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}

更新后的 邻接矩阵 变为下图所示 :

在这里插入图片描述

原来 结点 3 -> 结点 2 的 之间没有边 , 距离为 无穷大 , 现在通过 1 中转 , 3 -> 1 -> 2 的距离为 9 , 距离缩短了 ;

原来 结点 4 -> 结点 2 的 之间没有边 , 距离为 无穷大 , 现在通过 1 中转 , 4 -> 1 -> 2 的距离为 7 , 距离缩短了 ;

原来 结点 4 -> 结点 3 的 之间没有边 , 距离为 12 , 现在通过 1 中转 , 4 -> 1 -> 3 的距离为 11 , 距离缩短了 ;





六、在之前的基础上-只允许经过 1、2 号点中转得到任意两点之间的最短路径



上一个章节中 , 已经求出 只允许经过 1 号顶点时 , 任意两点的 最短路径 ;

本章节中 , 在上一章节的基础上 , 再求 经过 2 号顶点 , 是否能 得到 任意两个 结点 , 结点 i 到 结点 j 之间的 最短路径 ;


算法代码如下 :

// 只允许经过 1 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}// 只允许经过 1、2 号点中转得到任意两点之间的最短路径
for(int i = 1; i <= n; i++) {for(int j = 1; j <= n; j++) {if(edge[i][j] > edge[i][1] + edge[1][j]) {edge[i][j] = edge[i][1] + edge[1][j];}}
}

在这里插入图片描述

原来 结点 1 -> 结点 3 的 距离为 6 , 现在通过 2 中转 , 1 -> 2 -> 3 的距离为 5 , 距离缩短了 ;

原来 结点 4 -> 结点 3 的 距离为 11 , 路径为 4 -> 1 -> 3 , 现在再通过 2 中转 , 4 -> 1 -> 2 -> 3 , 新的距离为 10 , 距离缩短了 ;





七、在之前的基础上-只允许经过 1、2 、…、n 号点中转得到任意两点之间的最短路径



经过所有点的遍历 , 也就是经过 1、2 、3、4 号点之后 , 得到的 邻接矩阵 中 , 所有的 任意 两个点之间的距离都是最小距离 ;

代码参考 :

// k 代表结点个数 , 经过 1 ~ n 结点中转 , 每次增加一个点
// 就将 邻接矩阵 中的 最短路径 重新计算一遍 
for(int k = 1; k < n; k++) {for(int i = 1; i < n; i++) {for(int j = 1; j < n; j++) {if(edge[i][j] > edge[i][k] + edge[k][j]) {edge[i][j] = edge[i][k] + edge[k][j];}}}	
}

执行上述算法后 , 邻接矩阵 中的元素值 , 就是对应的 任意两个点 之间的最小距离 ;





八、弗洛伊德算法总结



弗洛伊德算法 可以 计算出 图中 任意两个点 的最短路径 ;

弗洛伊德算法的 时间复杂度是 O ( n 3 ) \rm O(n^3) O(n3) , 因为其嵌套了 3 层 for 循环 ; 结点数量小于 200 , 都可以使用该算法 ;

如果 图 中 , 边的权重 有 负数 , 并且 负数 所在边 与其它的边 组成了一个环 , 则不能使用 弗洛伊德算法 处理 ;

负环示例 :

在这里插入图片描述

这篇关于【数据结构与算法】图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 )的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/247230

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin