手把手带你解决车辆路径问题(VRP)---0基础入门python----遗传算法

本文主要是介绍手把手带你解决车辆路径问题(VRP)---0基础入门python----遗传算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本系列目的

  1. 0基础上手python
  2. 0基础学习建模
  3. 利用python解决简单的车辆路径问题

系列大纲

  1. 掌握遗传算法的操作流程
  2. 了解基本车辆路径问题的建模
  3. 解决车辆路径问题时,所涉及的python知识

一 、遗传算法

1.1 重点词汇

**个体:**所有决策变量都能找到其对应值。车辆路径问题中指一套完整的解决方案,其包含所有车辆路径(对于单种群编码而言)。

**种群:**所有个体的集合。程序中,“种群大小”常命名为popsize,pop。

**初始化种群:**一般随机生成一整个种群。

**适应度函数:**适应度函数用来计算每个个体适应度。若优化目标为最小化,如成本最小,则取目标函数倒数作为个体适应度;最大化目标情况下,适应度则为目标函数。
在这里插入图片描述

**归一化:**一块饼4个人均分,每人得到1/4块饼。如何结合每个人的饭量(适应度)分饼呢?甲的饭量(适应度)为0.6;乙为0.7;丙为0.4;丁为0.5;不可能因为0.6的饭量就分0.6块饼吧?将适应度转换归一化的处理可以理解为:个体适应度占1的比例。==>按饭量分饼。
甲:0.7-0.6+0.001/0.7-0.4=
乙: 0.7-0.7+0.001/0.7-0.4=
丙:0.7-0.4+0.001/0.7-0.4=
丁:0.7-0.4+0.001/0.7-0.4=

**交叉:**保留适应度较好的算子。车辆路径问题中指适应度较好的车辆路径,一般情况理解为保留个体中某几个车辆路径。(一般情况下需要结合交叉概率使用)

**变异:**根据一定规则改变决策变量的数值,是否改变则需要考虑变异概率。目的是产生新的线路。交叉得到的子代,其基因是可以在父代中找到的,而变异得到的子代,其基因不一定能在父代中找到。比如0-3-2-1-0表示车辆线路为3-2-1,假设修改后为0-3-2-0,车辆线路则为3-2

**算子:**在遗传算法中,我理解的是基因位。假设一般为整数编码,基因位=算子=决策变量

**鲁棒性:**参数设置对计算结果的影响。越没有影响,鲁棒性越好

1.2 理解遗传算法

文献常给出3个步骤:计算种群适应度、交叉、变异

反复操作以上步骤达到三个目的:1.产生新的解(个体)2.淘汰差的解(个体)3.逼近最优。不一定能达到最优

操作完1次这三个步骤叫做完成1次迭代

1.3 手动遗传算法

问题描述:一般1级物流节点可以描述为 配送中心—>客户—>配送中心。2辆车分别从配送中心发出接单,共接完5个订单后回到配送中心。如何规划车辆路线使得配送成本最低?

模型设计:模型一节会详细解释,这里只解释简单思路:先累加一辆车的行驶成本,再累加所有车辆的行驶成本。

模型假设:目标函数最小化,决策变量为5。

算法假设:种群规模为2,交叉概率pc,变异概率为pm
算法设计:交叉变异,不再赘述

数据假设:订单编号为1-2-3-4-5

–>初始化种群

编码:

    0-1-2-3-0-4-5-0   #个体10-5-4-3-0-2-1-0   #个体2

解码:(0表示配送中心,也表示分割符)

    0-1-2-3-0 #车辆1  0-4-5-0 #车辆20-5-4-3-0 #车辆1  0-2-1-0 #车辆2

–>计算适应度:(f表示适应度)

f1=d(0-1-2-3-0)+d(0-4-5-0)  #个体1中,车辆1路径距离+车辆2路径距离
f2=d(0-5-4-3-0)+d(0-2-1-0)  #个体2中,车辆1路径距离+车辆2路径距离

–>交叉:(PMX交叉、OX交叉等),本次采用PMX交叉

假设选择个体1中,0-4-5-0作为交叉部分
0-1-2-3-0-4-5-0           0-1-2-3-0-2-1-0    #个体1- - - -    ---->
0-5-4-3-0-2-1-0           0-5-4-3-0-4-5-0    #个体2
去掉重复的
0-5-4-3-0-2-1-0   #子代1
0-1-2-3-0-4-5-0   #子代2

–>变异:(提供两种思路)

1.改变0的位置。即车辆接单数可能发生改变
eg:0-1-2-3-0-4-5-0           #个体1改变前0-1-2-0-3-4-5-0           #个体1改变后
2.改变某些基因位的订单。
eg:0-1-2-3-0-4-5-0           #个体1改变前0-2-2-3-0-4-5-0           #存在重复0-2-1-3-0-4-5-0           #个体1改变后

注:交叉变异后,在下次计算种群适应度时,应保持种群规模为初试参数

这篇关于手把手带你解决车辆路径问题(VRP)---0基础入门python----遗传算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/245322

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解