员工一言不合就离职怎么办?我用Python写了个员工流失预测模型!

2023-10-20 00:30

本文主要是介绍员工一言不合就离职怎么办?我用Python写了个员工流失预测模型!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Show me data,用数据说话

今天我们聊一聊 员工离职

点击下方视频,先睹为快:

说道离职的原因,可谓多种多样。人们归总了两点:

1. 钱没给到位

2. 心受委屈了

有人离职是因为“世界那么大,我想去看看”,也有人觉得“怀有绝技在身,不怕天下无路”。

另一方面,员工离职对于企业而言有什么影响呢?

要知道,企业培养人才需要大量的成本, 为了防止人才再次流失,员工流失分析就显得十分重要了。 这不仅仅是公司评估员工流动率的过程,通过找到导致员工流失的主要因素,预测未来的员工离职状况,从而进一步减少员工流失。

那么,哪些因素最容易导致员工离职呢?

这次我们用数据说话,

教你如何用Python写一个员工流失预测模型。

01

数据理解

我们分析了kaggle平台分享的员工离职相关的数据集,共有10个字段14999条记录。 数据主要包括影响员工离职的各种因素(员工满意度、绩效考核、参与项目数、平均每月工作时长、工作年限、是否发生过工作差错、5年内是否升职、部门、薪资)以及员工是否已经离职的对应记录。字段说明如下:

02

读入数据 

# 导入包
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
import seaborn as sns from pyecharts.charts import Bar, Pie, Page
from pyecharts import options as opts 
from pyecharts.globals import SymbolType, WarningType
WarningType.ShowWarning = False
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
# 读入数据
df = pd.read_csv('HR_comma_sep.csv')
df.head() 

df.info() 
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 10 columns):#   Column                 Non-Null Count  Dtype  
---  ------                 --------------  -----  0   satisfaction_level     14999 non-null  float641   last_evaluation        14999 non-null  float642   number_project         14999 non-null  int64  3   average_montly_hours   14999 non-null  int64  4   time_spend_company     14999 non-null  int64  5   Work_accident          14999 non-null  int64  6   left                   14999 non-null  int64  7   promotion_last_5years  14999 non-null  int64  8   sales                  14999 non-null  object 9   salary                 14999 non-null  object 
dtypes: float64(2), int64(6), object(2)
memory usage: 1.1+ MB
# 查看缺失值
print(df.isnull().any().sum()) 

可以发现,数据质量良好,没有缺失数据。

03

探索性分析 

描述性统计

1

df.describe().T

从上述描述性分析结果可以看出:

  • 员工满意度 :范围0.09~1, 中位数0.640, 均值0.613, 总体来说员工对公司比较满意;
  • 绩效考核 :范围0.36~1, 中位数0.72, 均值0.716, 员工平均考核水平在中等偏上;
  • 参与项目数 :范围2~7, 中位数4, 均值

这篇关于员工一言不合就离职怎么办?我用Python写了个员工流失预测模型!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243374

相关文章

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Python程序的文件头部声明小结

《Python程序的文件头部声明小结》在Python文件的顶部声明编码通常是必须的,尤其是在处理非ASCII字符时,下面就来介绍一下两种头部文件声明,具有一定的参考价值,感兴趣的可以了解一下... 目录一、# coding=utf-8二、#!/usr/bin/env python三、运行Python程序四、

python web 开发之Flask中间件与请求处理钩子的最佳实践

《pythonweb开发之Flask中间件与请求处理钩子的最佳实践》Flask作为轻量级Web框架,提供了灵活的请求处理机制,中间件和请求钩子允许开发者在请求处理的不同阶段插入自定义逻辑,实现诸如... 目录Flask中间件与请求处理钩子完全指南1. 引言2. 请求处理生命周期概述3. 请求钩子详解3.1

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

Python实现pdf电子发票信息提取到excel表格

《Python实现pdf电子发票信息提取到excel表格》这篇文章主要为大家详细介绍了如何使用Python实现pdf电子发票信息提取并保存到excel表格,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录应用场景详细代码步骤总结优化应用场景电子发票信息提取系统主要应用于以下场景:企业财务部门:需