屋顶太阳能光伏系统的性能分析指标研究

2023-10-19 13:29

本文主要是介绍屋顶太阳能光伏系统的性能分析指标研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码及数据


💥1 概述

屋顶太阳能光伏系统的性能分析指标研究主要关注系统的发电效率、能量产出和经济回报等方面。

1. 发电效率:光伏系统的发电效率是评估其转换太阳能为电能能力的指标。常见的效率指标包括组件的单晶硅或多晶硅效率,以及整个系统的系统效率。高效率的光伏组件和系统可以提供更多的电能输出。

2. 能量产出:能量产出是指系统在一定时间内所产生的电能总量。它可以通过光伏组件的输出功率和工作时间来计算。该指标反映了光伏系统的实际发电能力。

3. 组件偏差:组件偏差指的是光伏组件实际发电能力与额定功率之间的差异。组件偏差可以由功率偏差系数来衡量,该系数反映了组件在不同工作条件下的发电性能。

4. 系统可靠性:系统可靠性是指系统在长期运行中的稳定性和可靠性。常见的可靠性指标包括系统的平均故障间隔时间(MTBF)和故障平均修复时间(MTTR),用于评估系统的可靠性和可用性。

5. 经济回报:经济回报指标主要用于评估光伏系统的经济性。包括回收期(ROI)、净现值(NPV)和内部收益率(IRR)等指标,用于评估系统投资的回报和收益情况。

这些指标可以帮助评估屋顶太阳能光伏系统的性能和效益,为系统设计、运营和维护提供指导和参考。

📚2 运行结果

部分代码:

%% Estimaci n de la energ a[ELxano,EFconxano,EFgxano,ELxanoHS,EFconxmin,EFGano,ETGano,EFGanoHS]=code7830f1(Pn,SFanu,PL,PLHS,PotenciaGF);
%% C lculo de los coeficientes de autoconsumo para los diferentes rangos de tiempo[PSIscano,PSIssano,PSPano,GL,PSIssanoHS,PSPanoHS,GLHS]=code7830f2(ELxano,EFconxano,EFgxano,ELxanoHS,EFGano,ETGano,EFGanoHS);%% Representaci n gr fica    
fig=figure(1);clf(fig,'reset');hold onplot(Pn,PSIscano)plot(Pn,PSIssano,'--','Color',[0.4660 0.6740 0.1880],'LineWidth',1.5)plot(Pn,PSIssanoHS,'Color',[0.4660 0.6740 0.1880],'LineWidth',1.5)plot(Pn,PSPano,'--','Color',[0.4940 0.1840 0.5560],'LineWidth',1.5)plot(Pn,PSPanoHS,'Color',[0.4940 0.1840 0.5560],'LineWidth',1.5)plot(Pn,GL,'--','Color',[0.6350 0.0780 0.1840],'LineWidth',1.5)plot(Pn,GLHS,'Color',[0.6350 0.0780 0.1840]	,'LineWidth',1.5)xlabel('P_0(kW)','FontSize',14);ylabel('Indices','FontSize',14)set(gca,'FontSize',14);  [ZEI,Posi]=min(abs(PSIscano-PSIssano));plot(Pn(Posi),PSIscano(Posi),'*','Color',[0.4660 0.6740 0.1880]) X=['ZEI'];disp(X)Pn(Posi)PSIscano(Posi)*100[ZEIHS,Posi]=min(abs(PSIscano-PSIssanoHS));plot(Pn(Posi),PSIscano(Posi),'diamond','Color',[0.4660 0.6740 0.1880])X=['ZEI HS'];disp(X)Pn(Posi)PSIscano(Posi)*100[maxPS,Posi]=max(PSPano);plot(Pn(Posi),PSPano(Posi),'*','Color',[0.4940 0.1840 0.5560])X=['PS maximo'];disp(X)Pn(Posi)PSPano(Posi)*100[maxPS,Posi]=max(PSPanoHS);plot(Pn(Posi),PSPanoHS(Posi),'diamond','Color',[0.4940 0.1840 0.5560])X=['PS maximo HS'];disp(X)Pn(Posi)PSPanoHS(Posi)*100[minGL,Posi]=min(GL);plot(Pn(Posi),GL(Posi),'*','Color',[0.6350 0.0780 0.1840])X=['GLmin'];disp(X)Pn(Posi)GL(Posi)*100[maxGL,Posi]=min(GLHS);plot(Pn(Posi),GLHS(Posi),"diamond",'Color',[0.6350 0.0780 0.1840])   X=['GLmin HS'];disp(X)Pn(Posi)GLHS(Posi)*100xlim([0 2000])ylim([-0.6 1])

%% Estimaci n de la energ a
    [ELxano,EFconxano,EFgxano,ELxanoHS,EFconxmin,EFGano,ETGano,EFGanoHS]=code7830f1(Pn,SFanu,PL,PLHS,PotenciaGF);
%% C lculo de los coeficientes de autoconsumo para los diferentes rangos de tiempo
    [PSIscano,PSIssano,PSPano,GL,PSIssanoHS,PSPanoHS,GLHS]=code7830f2(ELxano,EFconxano,EFgxano,ELxanoHS,EFGano,ETGano,EFGanoHS);

%% Representaci n gr fica    
fig=figure(1);
    clf(fig,'reset');

hold on
    plot(Pn,PSIscano)
    plot(Pn,PSIssano,'--','Color',[0.4660 0.6740 0.1880],'LineWidth',1.5)
    plot(Pn,PSIssanoHS,'Color',[0.4660 0.6740 0.1880],'LineWidth',1.5)
    plot(Pn,PSPano,'--','Color',[0.4940 0.1840 0.5560],'LineWidth',1.5)
    plot(Pn,PSPanoHS,'Color',[0.4940 0.1840 0.5560],'LineWidth',1.5)
    plot(Pn,GL,'--','Color',[0.6350 0.0780 0.1840],'LineWidth',1.5)
    plot(Pn,GLHS,'Color',[0.6350 0.0780 0.1840]    ,'LineWidth',1.5)
   
    xlabel('P_0(kW)','FontSize',14);
    ylabel('Indices','FontSize',14)
    set(gca,'FontSize',14);  

[ZEI,Posi]=min(abs(PSIscano-PSIssano));
    plot(Pn(Posi),PSIscano(Posi),'*','Color',[0.4660 0.6740 0.1880]) 
     X=['ZEI'];
    disp(X)
    Pn(Posi)
    PSIscano(Posi)*100

[ZEIHS,Posi]=min(abs(PSIscano-PSIssanoHS));
    plot(Pn(Posi),PSIscano(Posi),'diamond','Color',[0.4660 0.6740 0.1880])
    X=['ZEI HS'];
    disp(X)
    Pn(Posi)
    PSIscano(Posi)*100

[maxPS,Posi]=max(PSPano);
    plot(Pn(Posi),PSPano(Posi),'*','Color',[0.4940 0.1840 0.5560])
     X=['PS maximo'];
    disp(X)
    Pn(Posi)
    PSPano(Posi)*100

[maxPS,Posi]=max(PSPanoHS);
    plot(Pn(Posi),PSPanoHS(Posi),'diamond','Color',[0.4940 0.1840 0.5560])
    X=['PS maximo HS'];
    disp(X)
    Pn(Posi)
    PSPanoHS(Posi)*100

[minGL,Posi]=min(GL);
    plot(Pn(Posi),GL(Posi),'*','Color',[0.6350 0.0780 0.1840])
    X=['GLmin'];
    disp(X)
    Pn(Posi)
    GL(Posi)*100

[maxGL,Posi]=min(GLHS);
    plot(Pn(Posi),GLHS(Posi),"diamond",'Color',[0.6350 0.0780 0.1840])   
    X=['GLmin HS'];
    disp(X)
    Pn(Posi)
    GLHS(Posi)*100

   xlim([0 2000])
   ylim([-0.6 1])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]白建勇.屋顶光伏系统技术经济评价及运营模式选择研究[D].华北电力大学,2014.DOI:10.7666/d.D529260.

[2]白建勇.屋顶光伏系统技术经济评价及运营模式选择研究[D].华北电力大学,2015.

[3]张华.城市建筑屋顶光伏利用潜力评估研究[D].天津大学[2023-10-15].DOI:CNKI:CDMD:1.1018.025701.

[4] G. Jiménez-Castillo, A.J. Martínez-Calahorro, C. Rus-Casas, A. Snytko, F.J. Muñoz-Rodríguez (2023) Performance analysis indices for Rooftop Solar Photovoltaic system.

🌈4 Matlab代码及数据

这篇关于屋顶太阳能光伏系统的性能分析指标研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/240085

相关文章

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

更改linux系统的默认Python版本方式

《更改linux系统的默认Python版本方式》通过删除原Python软链接并创建指向python3.6的新链接,可切换系统默认Python版本,需注意版本冲突、环境混乱及维护问题,建议使用pyenv... 目录更改系统的默认python版本软链接软链接的特点创建软链接的命令使用场景注意事项总结更改系统的默

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer