数据集分析工具pandas-profiling进阶:个性化定制配置文件与参数

本文主要是介绍数据集分析工具pandas-profiling进阶:个性化定制配置文件与参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.常用方法

2.自定义参数

3.自定义配置文件

4.总结

1.常用方法

本文使用 pandas_profiling  3.1.0

我们在使用pandas-profiling时,以泰坦尼克号为例,一般这样写:

import pandas as pd
from pandas_profiling import ProfileReportdf = pd.read_csv('train.csv',index_col=['PassengerId'])report = ProfileReport(df) 
report.to_notebook_iframe()report.to_file('result.html')

打开结果的网页,可以分为几个部分,我们后面将介绍他们的自定义配置方法。

 

2.自定义参数

我们将简单地介绍一些我自己常用的参数。

更多介绍请前往官方github和文档

pandas-profiling官方github

pandas-profiling官方文档

1.风格设置

有两个备选的风格:

dark_mode

 orange_mode

report = ProfileReport(df,dark_mode = True)

2.更多计算与统计数据

关于统计,官方有两个配置文件:

对应两个方法,minimal和default,其中minimal适用于大数据集(只算default的一部分),default是默认配置。

 改成minimal

report = ProfileReport(df,minimal = True)

此外,还有一个参数,explorative,可以计算更多特征

report = ProfileReport(df,  explorative=True)

3.加标题

report = ProfileReport(df, title = 'Pandas Profiling Report')

4.转为json

report.to_file('result.json')

3.自定义配置文件

几乎所有的操作都可以通过修改配置文件得到。我将随便更改配置文件中的一些属性以示意,提供前后对比。

我们不妨拷贝在文件夹pandas_profiling下config_default.yaml文件为一个新的文件,config_custom.yaml文件以供更改。

找不到文件夹pandas_profiling在哪的,可以运行

import pandas_profiling 
print(pandas_profiling.__file__)

配置文件结构与更改的对应关系

先把config_custom.yaml扔到同一目录下,然后运行,来配置文件

file = 'config_custom.yaml'
report = ProfileReport(df,dark_mode = True,config_file = file)

1.基本配置

# Title of the document
title: "Pandas Profiling Report"# Metadata
dataset:description: "wuhu"creator: "fk"author: "ym"copyright_holder: ""copyright_year: ""url: ""variables:descriptions: {'Sex':'OMG'}# infer dtypes
infer_dtypes: true# Show the description at each variable (in addition to the overview tab)
show_variable_description: true# Number of workers (0=multiprocessing.cpu_count())
pool_size: 0# Show the progress bar
progress_bar: true

原来:

修改后:

 

 2.变量段(我这边没改)

vars:num: # 数值数据quantiles: # 数据集分段以供统计的比例- 0.05- 0.25- 0.5- 0.75- 0.95skewness_threshold: 20low_categorical_threshold: 5# Set to zero to disablechi_squared_threshold: 0.999cat: # 类别数据length: truecharacters: truewords: truecardinality_threshold: 50n_obs: 5# Set to zero to disablechi_squared_threshold: 0.999coerce_str_to_date: falseredact: falsehistogram_largest: 50bool:n_obs: 3# string to boolean mapping dictmappings:t: truef: falseyes: trueno: falsey: truen: falsetrue: truefalse: falsefile: active: falseimage:active: trueexif: truehash: truepath:active: falseurl:active: false

3.剩下的统计段

# Sort the variables. Possible values: "ascending", "descending" or null (leaves original sorting)
sort: null# which diagrams to show
missing_diagrams:bar: truematrix: falseheatmap: falsedendrogram: falsecorrelations:pearson:calculate: falsewarn_high_correlations: falsethreshold: 0.9spearman:calculate: truewarn_high_correlations: truethreshold: 0.9kendall:calculate: falsewarn_high_correlations: falsethreshold: 0.9phi_k:calculate: truewarn_high_correlations: falsethreshold: 0.9cramers:calculate: falsewarn_high_correlations: falsethreshold: 0.9# Bivariate / Pairwise relations
interactions:targets: []continuous: true# Configuration related to the samples area
samples:head: 10tail: 10random: 0# For categorical
categorical_maximum_correlation_distinct: 100report:precision: 10

更改后和之前的对比。

 

 

 4.画图(一般改颜色,就是camp)

# Plot-specific settings
plot:# Image format (svg or png)image_format: "svg"dpi: 800scatter_threshold: 1000correlation:cmap: 'RdBu'bad: '#000000'missing:cmap: 'RdBu'# Force labels when there are > 50 variables# https://github.com/ResidentMario/missingno/issues/93#issuecomment-513322615force_labels: truepie: # 饼图# display a pie chart if the number of distinct values is smaller or equal (set to 0 to disable)max_unique: 10histogram: # 变量后面那个直方图x_axis_labels: true# Number of bins (set to 0 to automatically detect the bin size)# bins: 50bins: 50# Maximum number of bins (when bins=0)# max_bins: 250max_bins: 250

5.其他

# The number of observations to show
n_obs_unique: 5
n_extreme_obs: 5
n_freq_table_max: 10# Use `deep` flag for memory_usage
memory_deep: false# Configuration related to the duplicates
duplicates:head: 10key: "# duplicates"# Configuration related to the rejection of variables
reject_variables: true# When in a Jupyter notebook
notebook:iframe:height: '800px'width: '100%'# or 'src'attribute: 'srcdoc'html:# Minify the htmlminify_html: true# Offline supportuse_local_assets: true# If true, single file, else directory with assetsinline: true# Show navbarnavbar_show: true# Assets prefix if inline = trueassets_prefix: null# Styling options for the HTML reportstyle:theme: nulllogo: ""primary_color: "#337ab7"full_width: false

4.总结

本文介绍了修改参数和配置文件的解决方案,对于如warning,变量查看之类的问题我会另外写(因为这篇比较长,看着难受 doge)

在我们阅读官方文档后,还有一些问题,似乎是改参数和配置文件不能解决的:

1.改成中文的报告

2.修改画图的类型,比如我不要直方图,改成kde的图

3.修改报告的结构。github中提供了老版本(2.5.0左右)的解决方案,但目前好像有点问题。

github官方修改结构解决方案

我比较菜,只知道可以改html代码解决问题,或者开web开发者工具改dom节点。

这篇关于数据集分析工具pandas-profiling进阶:个性化定制配置文件与参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/236118

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.