基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)

本文主要是介绍基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🎉🎉🎉🎉欢迎您的到来😊😊😊

🥬博客主页博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

📝床头铭将来的我一定会感谢现在奋斗的自己!

 🎁专栏目录链接:

🌈🌈🌈🌟🌟🌟
电气代码智能算法及其应用
路径规划神经网络预测
优化调度图像处理
车间调度信号处理
浪漫的她我的哲思
数学建模

 👨‍🎓个人主页:研学社的博客 

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


💥1 概述

自然激励技术(频率法和时间法)与特征系统实现算法和模态凝聚算法。用于识别受高斯白噪声激励影响的2DOF系统,并增加激励和响应的不确定性(也是高斯白噪声)。

具有模式凝聚的1时域NExT-ERA
----------------------------------------------------------------------
[结果] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)

输入:

data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据
引用的总长度: 参考通道的维科 .its 维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别采用每个参考通道)maxlags: 互相关函数
fs 中的滞后数: 采样频率
ncols: 汉克尔矩阵中的列数(大于 2/3*(maxlags+1) )

nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割:模式顺序的初始截止值 maxcut:模式顺序

偏移的最大截止值:最后一行和列块中的移位值(增加 EMAC 灵敏度)通常 =10
EMAC_option:如果此值等于 1,则 EMAC 将与列数无关(仅根据可观测性矩阵计算,而不是从可控性计算)

LimCMI:模式的最小允许CMI LimMAC & LimFreq:MAC的最小值和频率差的最大值,假设两种模式
指的是相同的实模
Plot_option:如果1绘制稳定图

输出:

结果:由以下组件
组成的结构 参数: NaFreq : 固有频率矢量
阻尼比:阻尼比矢量
模态形状:振型矩阵
指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性

MPC:模态相位共线性
CMI:一致模式指示器

具有模式凝聚的2频域NExT-ERA
----------------------------------------------------------------------
[结果] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option)

输入:

data:包含响应数据的数组,其维度为 (nch,Ndata),其中 nch 是通道数。Ndata 是数据
refch 的总长度: 参考通道的总长度 .其维度 (numref,1) 其中 numref 是参考通道的数量(该算法分别获取每个参考通道)
window: 窗口大小以获得光谱密度
N: 窗口数 p: 窗口
之间的重叠比率。从 0 到 1
fs: 采样频率
ncols: 汉克尔矩阵中的列数(大于 2/3*(ceil(窗口/2+1)-1))nrows: 汉克尔矩阵中的行数(超过 20 * 模式数)初始切割: 模式阶数的初始截止值 maxcut: 模式阶

移位的最大截止值: 最后一行和列块中的移位值(增加 EMAC 灵敏度)

通常 =10
EMAC_option:如果此值等于 1,则 EMAC 将独立于列数(仅根据可观测性矩阵计算,而不是从可控性计算)LimCMI:
模式的最小允许 CMI LimMAC 和 LimFreq:MAC 的最小值和频率差的最大值,假设两种模式
指的是相同的实Plot_option模式
: 如果 1 绘制稳定图

输出:

结果:由以下组件
组成的结构 参数: NaFreq : 固有频率矢量
阻尼比:阻尼比矢量
模态形状:振型矩阵
指标:MAmC : 模态幅度相干性 EMAC:扩展模态振幅相干性

MPC:模态相位共线性
CMI:一致模式指示器

📚2 运行结果

  

🌈3 Matlab代码实现

部分代码:

clc; clear; close all;
%Model Parameters and excitation
%--------------------------------------------------------------------------

M=[1 0; 0 1];
K=[2 -1; -1 1]*5;
C=0.0001*M+0.0001*K;
f=2*randn(2,10000);
fs=100;

%Apply modal superposition to get response
%--------------------------------------------------------------------------

n=size(f,1);
dt=1/fs; %sampling rate
[Vectors, Values]=eig(K,M);
Freq=sqrt(diag(Values))/(2*pi); % undamped natural frequency
steps=size(f,2);

Mn=diag(Vectors'*M*Vectors); % uncoupled mass
Cn=diag(Vectors'*C*Vectors); % uncoupled damping
Kn=diag(Vectors'*K*Vectors); % uncoupled stifness
wn=sqrt(diag(Values));
zeta=Cn./(sqrt(2.*Mn.*Kn));  % damping ratio
wd=wn.*sqrt(1-zeta.^2);

fn=Vectors'*f; % generalized input force matrix

t=[0:dt:dt*steps-dt];

for i=1:1:n
    
    h(i,:)=(1/(Mn(i)*wd(i))).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t); %transfer function of displacement
    hd(i,:)=(1/(Mn(i)*wd(i))).*(-zeta(i).*wn(i).*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)+wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)); %transfer function of velocity
    hdd(i,:)=(1/(Mn(i)*wd(i))).*((zeta(i).*wn(i))^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)-zeta(i).*wn(i).*wd(i).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t)-wd(i).*((zeta(i).*wn(i)).*exp(-zeta(i)*wn(i)*t).*cos(wd(i)*t))-wd(i)^2.*exp(-zeta(i)*wn(i)*t).*sin(wd(i)*t)); %transfer function of acceleration
    
    qq=conv(fn(i,:),h(i,:))*dt;
    qqd=conv(fn(i,:),hd(i,:))*dt;
    qqdd=conv(fn(i,:),hdd(i,:))*dt;
    
    q(i,:)=qq(1:steps); % modal displacement
    qd(i,:)=qqd(1:steps); % modal velocity
    qdd(i,:)=qqdd(1:steps); % modal acceleration
       
end

x=Vectors*q; %displacement
v=Vectors*qd; %vecloity
a=Vectors*qdd; %vecloity

%Add noise to excitation and response
%--------------------------------------------------------------------------
f2=f+0.1*randn(2,10000);
a2=a+0.1*randn(2,10000);
v2=v+0.1*randn(2,10000);
x2=x+0.1*randn(2,10000);

%Plot displacement of first floor without and with noise
%--------------------------------------------------------------------------
figure;
subplot(3,2,1)
plot(t,f(1,:)); xlabel('Time (sec)');  ylabel('Force1'); title('First Floor');
subplot(3,2,2)
plot(t,f(2,:)); xlabel('Time (sec)');  ylabel('Force2'); title('Second Floor');
subplot(3,2,3)
plot(t,x(1,:)); xlabel('Time (sec)');  ylabel('DSP1');
subplot(3,2,4)
plot(t,x(2,:)); xlabel('Time (sec)');  ylabel('DSP2');
subplot(3,2,5)
plot(t,x2(1,:)); xlabel('Time (sec)');  ylabel('DSP1+Noise');
subplot(3,2,6)
plot(t,x2(2,:)); xlabel('Time (sec)');  ylabel('DSP2+Noise');

%Identify modal parameters using displacement with added uncertainty
%--------------------------------------------------------------------------
data=x2;
refch=2;
maxlags=999;
window=2000;
N=5;
p=0;
ncols=800;    
nrows=200;   
initialcut=2;
maxcut=20; 
shift=10;      
EMAC_option=1;
LimCMI=75;
LimMAC=50;
LimFreq=0.5;
Plot_option=1;

figure;
[Result1] = NExTFERA_CONDENSED(data,refch,window,N,p,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);
figure;
[Result2] = NExTTERA_CONDENSED(data,refch,maxlags,fs,ncols,nrows,initialcut,maxcut,shift,EMAC_option,LimCMI,LimMAC,LimFreq,Plot_option);

%Plot real and identified first modes to compare between them
%--------------------------------------------------------------------------
figure;
plot([0 ; -Vectors(:,1)],[0 1 2],'r*-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,1)],[0 1 2],'go-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,1)],[0 1 2],'y^--');
hold on
plot([0 ; -Vectors(:,2)],[0 1 2],'b^-');
hold on
plot([0  ;Result1.Parameters.ModeShape(:,2)],[0 1 2],'mv-.');
hold on
plot([0  ;Result2.Parameters.ModeShape(:,2)],[0 1 2],'co--');
hold off
title('Real and Identified Mode Shapes');
legend('Mode 1 (Real)','Mode 1 (Identified using NExTF-ERA(Condensed))','Mode 1 (Identified using NExTT-ERA(Condensed))'...
      ,'Mode 2 (Real)','Mode 2 (Identified using NExTF-ERA(Condensed))','Mode 2 (Identified using NExTT-ERA(Condensed))');
xlabel('Amplitude');
ylabel('Floor');
grid on;
daspect([1 1 1]);

%Display real and Identified natural frequencies and damping ratios
%--------------------------------------------------------------------------
disp('Real and Identified Natural Drequencies and Damping Ratios of the First Mode'); 
disp(strcat('Real: Frequency=',num2str(Freq(1)),'Hz',' Damping Ratio=',num2str(zeta(1)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(1)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(1)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(1)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(1)),'%'));
disp('-----------')
disp('Real and Identified Natural Drequencies and Damping Ratios of the Second Mode');
disp(strcat('Real: Frequency=',num2str(Freq(2)),'Hz',' Damping Ratio=',num2str(zeta(2)*100),'%'));
disp(strcat('NExTF-ERA(Condensed): Frequency=',num2str(Result1.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result1.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result1.Indicators.CMI(2)),'%'));
disp(strcat('NExTT-ERA(Condensed): Frequency=',num2str(Result2.Parameters.NaFreq(2)),'Hz',' Damping Ratio=',num2str(Result2.Parameters.DampRatio(2)),'%'));
disp(strcat('CMI of The Identified Mode=',num2str(Result2.Indicators.CMI(2)),'%'));

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] R. Pappa, K. Elliott, and A. Schenk, “A consistent-mode indicator for the eigensystem realization algorithm,” Journal of Guidance Control and Dynamics (1993), 1993.

[2] R. S. Pappa, G. H. James, and D. C. Zimmerman, “Autonomous modal identification of the space shuttle tail rudder,” Journal of Spacecraft and Rockets, vol. 35, no. 2, pp. 163–169, 1998.

[3] James, G. H., Thomas G. Carne, and James P. Lauffer. "The natural excitation technique (NExT) for modal parameter extraction from operating structures." Modal Analysis-the International Journal of Analytical and Experimental Modal Analysis 10.4 (1995): 260.

[4] Al Rumaithi, Ayad, "Characterization of Dynamic Structures Using Parametric and Non-parametric System Identification Methods" (2014). Electronic Theses and Dissertations. 1325.

[5] Al-Rumaithi, Ayad, Hae-Bum Yun, and Sami F. Masri. "A Comparative Study of Mode Decomposition to Relate Next-ERA, PCA, and ICA Modes." Model Validation and Uncertainty Quantification, Volume 3. Springer, Cham, 2015. 113-133.

这篇关于基于模态凝聚算法的特征系统实现算法的自然激励技术(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231236

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja