【算法|前缀和系列No.5】leetcode1314. 矩阵区域和

2023-10-18 05:44

本文主要是介绍【算法|前缀和系列No.5】leetcode1314. 矩阵区域和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人主页:兜里有颗棉花糖
欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创
收录于专栏【手撕算法系列专栏】【Leetcode】
🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助
🍓希望我们一起努力、成长,共同进步。
在这里插入图片描述

点击直接跳转到该题目

目录

  • 1️⃣题目描述
  • 2️⃣题目解析
  • 3️⃣解题代码

1️⃣题目描述

给你一个 m x n 的矩阵 mat 和一个整数 k ,请你返回一个矩阵 answer ,其中每个 answer[i][j] 是所有满足下述条件的元素 mat[r][c] 的和:

  • i - k <= r <= i + k
  • j - k <= c <= j + k
  • (r, c) 在矩阵内

示例1:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 1
输出:[[12,21,16],[27,45,33],[24,39,28]]

示例2:

输入:mat = [[1,2,3],[4,5,6],[7,8,9]], k = 2
输出:[[45,45,45],[45,45,45],[45,45,45]]

注意:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n, k <= 100
  • 1 <= mat[i][j] <= 100

2️⃣题目解析

  • answer[i][j] = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1]

其中:

  • x1 = max(0,i - k) + 1y1 = max(0,j - k) + 1x2 = min(i + k,m - 1) + 1y2 = min(j + k,n - 1) + 1

另外一定要注意下标的映射关系。

3️⃣解题代码

class Solution {
public:vector<vector<int>> matrixBlockSum(vector<vector<int>>& mat, int k) {int m = mat.size(), n = mat[0].size();// 创建前缀和矩阵vector<vector<int>> dp(m + 1,vector<int>(n + 1));for(int i = 1;i <= m;i++)for(int j = 1;j <= n;j++)dp[i][j] = dp[i - 1][j] + dp[i][j - 1] + mat[i - 1][j - 1] - dp[i - 1][j - 1];// 使用前缀和矩阵vector<vector<int>> answer(m,vector<int>(n));for(int i = 0;i < m;i++)for(int j = 0;j < n;j++){// 注意下标的映射关系int x1 = max(0,i - k) + 1,y1 = max(0,j - k) + 1,x2 = min(i + k,m - 1) + 1,y2 = min(j + k,n - 1) + 1;answer[i][j] = dp[x2][y2] - dp[x1 - 1][y2] - dp[x2][y1 - 1] + dp[x1 - 1][y1 - 1];}return answer;}
};

最后就通过啦!!!

这篇关于【算法|前缀和系列No.5】leetcode1314. 矩阵区域和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230559

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

正则表达式r前缀使用指南及如何避免常见错误

《正则表达式r前缀使用指南及如何避免常见错误》正则表达式是处理字符串的强大工具,但它常常伴随着转义字符的复杂性,本文将简洁地讲解r的作用、基本原理,以及如何在实际代码中避免常见错误,感兴趣的朋友一... 目录1. 字符串的双重翻译困境2. 为什么需要 r?3. 常见错误和正确用法4. Unicode 转换的

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Java如何根据文件名前缀自动分组图片文件

《Java如何根据文件名前缀自动分组图片文件》一大堆文件(比如图片)堆在一个目录下,它们的命名规则遵循一定的格式,混在一起很难管理,所以本文小编就和大家介绍一下如何使用Java根据文件名前缀自动分组图... 目录需求背景分析思路实现代码输出结果知识扩展需求一大堆文件(比如图片)堆在一个目录下,它们的命名规

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.