R语言多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化

本文主要是介绍R语言多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于多项式曲线回归的研究报告,包括一些图形和统计输出。本文使用的数据集记录了 1236 名新生婴儿的体重,以及他们母亲的其他协变量。

本研究的目的是测量吸烟对新生儿体重的影响。研究人员需要通过控制其他协变量(例如母亲的体重和身高)来隔离其影响。这可以通过使用多元回归模型来完成,例如,通过考虑权重  Y_i  可以建模为

相关视频:非线性模型原理与R语言多项式回归、局部平滑样条、 广义相加模型GAM分析

非线性模型原理与R语言多项式回归、局部平滑样条、 广义相加模型GAM分析

,时长05:41


str(babis)

数据集的描述如下:

  • bwt 是因变量,新生儿体重以盎司为单位。数据集使用 999 作为缺失值。
  • gestation 是怀孕的时间,以天为单位。999 是缺失值的代码。
  • parity 第一胎使用 0,否则使用 1,缺失值使用 9。
  • age 是母亲的年龄,整数。99 是缺失值。
  • height 是母亲的身高。99 是缺失值。
  • weight 是母亲的体重,以磅为单位。999 是一个缺失值。
  • smoke 是一个分类变量,表示母亲现在是否吸烟 (1) (0)。9 是缺失值。

这个问题的研究人员想要判断以下内容:

  • 吸烟的母亲会增加早产率。
  • 吸烟者的新生儿在每个胎龄都较小。
  • 与母亲的孕前身高和体重、产次、既往妊娠结局史或婴儿性别(这最后两个协变量不可用)相比,吸烟似乎是出生体重的一个更重要的决定因素。

我们将专注于第二个判断

从str()命令中注意到,所有的变量都被存储为整数。我将把缺失值转换为NAs,这是R中缺失值的正确表示。

bwt == 999] <- NA# 有多少观察结果是缺失的?sapply(babies, couna)

每当您在 R 中使用函数时,请记住,默认情况下它可能有也可能没有 na-action。例如,该 mean() 函数没有,并且 NA 在将缺少值的参数传递给它时简单地返回:

sapply(babies, mean)

您可以通过检查 mean() 函数帮助来纠正它,通过一个参数 na.rm=TRUE,它删除了 NAs。

sapply(babies, mean, na.rm = TRUE)

另一方面, 默认情况下summary() 会删除 NAs,并输出找到的 NAs 数量,这使其成为汇总数据时的首选。

summary(babies)

我们可以看到转换因子显示了不同的摘要,因为 summary() 操作根据变量类型而变化:

parity <- factor(parity, levels )

绘制数据是您应该采取的第一个操作。我将使用 lattice 包来绘制它,因为它的最大优势在于处理多变量数据。

require(lattice)
xyplot

为了拟合多元回归模型,我们使用命令 lm()

model <- lm(bwt ~ ., data = babies)

这是总结:

summary(model)

注意R的默认动作是删除信息缺失的行。不过,如何解释这些系数呢?

如果j协变量xj是实值,那么系数βj的值就是在其他协变量不变的情况下,将xij增加1个单位对Yi的平均影响。
如果j协变量xj是分类的,那么系数βj的值是对Yi从参考类别到指定水平的平均增量影响,而其他协变量保持不变。参考类别的平均值是截距(或参考类别,如果模型中有一个以上的分类协变量)。
为了验证这些假设,R有一个绘图方案。
 

残差中的曲率表明,需要进行一些转换。尝试取bwt的对数,以获得更好的拟合(与妊娠期相比)。 

summary(model.log)

为了简单起见,我会保留线性模型。给妊娠期增加一个二次项可能有用。公式通常保存^作为交互作用的快捷方式,所以(妊娠期+烟)^2与妊娠期*烟或妊娠期+烟+妊娠期:烟相同。二次项。

改进仍然很小,但它现在确实将观察 261 显示为异常值。这个观察有什么问题?

babies[261, ]

我们可以看到,而母亲的身高、年龄等都非常合理;这个婴儿异常早产。因此,将他/她剔除出模型。

拟合度有所提高,但现在870号婴儿显示为异常值......这可以继续下去,直到我们都满意为止。你还会做哪些转化?将吸烟和妊娠期交互作用会更好吗?


这篇关于R语言多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/228110

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1