MPNN 模型:GNN 传递规则的实现

2023-10-16 07:30

本文主要是介绍MPNN 模型:GNN 传递规则的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先,假如我们定义一个极简的传递规则

f(X,A) = AX

A是邻接矩阵,X是特征矩阵, 其物理意义就是 通过矩阵乘法操作,批量把图中的相邻节点汇聚到当前节点。

但是由于A的对角线都是 0.因此自身的节点特征会被过滤掉。

图神经网络的核心是 吸周围之精华,再叠加自身,因而需要改进来保留自身特征。如何做?

方法是给每个节点添加一个自环,即将邻接矩阵对角线值各加1,此时用\widetilde{A}表示,\widetilde{A}X做到了聚合邻居节点并保留自身信息。

但是当图过于复杂时,聚合邻居信息会不断执行矩阵乘法或加法,可能导致特征值太大而溢出。如何做?

方法是邻接矩阵归一化。那么如何归一化呢?我们由A可以得到图的度D,由于A变成了\widetilde{A},我们认为\widetilde{A}的度为\widetilde{D}。常用的归一化方式就是用度数矩阵的倒数\widetilde{D}^{-1}

f(X,A) = \widetilde{D}^{-1}\widetilde{A}X

但是\widetilde{D}^{-1}\widetilde{A}仅仅对矩阵A进行了列上的缩放,操作后的元素值是不对称的,某种程度破坏了图结构的对称性。(这是为什么?)那么如何修复这种对称性呢?

方法是在行的方向上也进行对等缩放,具体 做法是,让邻接矩阵\widetilde{A}右乘一个缩放因子\widetilde{D}^{-1},这样就使得缩放版本的邻接矩阵重新恢复对称性。于是信息聚合的方式为

f(X,A) = \widetilde{D}^{-1}\widetilde{A}\widetilde{D}^{-1}X

\widetilde{D}^{-1}\widetilde{A}\widetilde{D}^{-1}能够很好地缩放邻接矩阵,既然-1次幂可以完成,为什么不尝试一下(-1/2)次幂呢?

事实上,对每个矩阵元素都实施\widetilde{D}^{-\frac{1}{2}}\widetilde{D}^{-\frac{1}{2}}=\frac{1}{\sqrt{deg(v_i)\sqrt{deg(v_j)}}}

这种操作可以对邻接矩阵地每一行每一列”无偏差“地进行一次归一化,以防相邻节点间度数不匹配对归一化地影响。(why)?

于是就出现了被众多学术论文广泛采纳地邻接矩阵地缩放形式

f(X,A) = \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}X

考虑权值影响的信息聚合

上述仅仅考虑到邻接矩阵对获取邻居节点信息的影响,即只考虑拓扑结构施加的影响。事实上,对于特定节点而言,不同维度的特征值对给定任务的影响程度是不同的,如果第对各个特征值进行时 打分就,就要涉及到权值矩阵W了,也就是要构造更为完整的图神经网络模型 AWX。权值矩阵W通常是通过学习得到的。

f(X,A) = \widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}XW

如果我们想压缩节点输出的维度,也可以缩减权值矩阵的输出维度。

在以上的分析中,没有考虑激活函数的影响,无法给予神经网络的非线性变换能力,因此通常我们需要使用sigmoid、tanh、Relu等作为激活函数,最后再用argmax函数模拟一个分类的输出。

reference:

《从深度学习到图神经网络:模型与实践》  张玉宏 等

code:

import networkx as nx
import matplotlib.pyplot as plt
import numpy as np#定义节点
N = [(f"v{i}", 0) for i in range (1,3)] + [(f"v{i}",1) for i in range (3,5)] + [(f"v{i}",2) for i in range (5,6)] #定义节点#定义边
E = [("v1","v2"),("v1","v3"),("v2","v1"),("v2","v3"),("v2","v4"),("v3","v1"),("v3","v2"),("v3","v4"),("v4","v2"),("v4","v3"),("v4","v5"),("v5","v4")] #定义边G = nx.Graph() #构造图G.add_nodes_from(list(map(lambda x: x[0],N))) #给图添加节点
G.add_edges_from(E) #给图添加边ncolor =['r']*2 + ['b']*2 +['g']*1 #设置节点颜色
nsize = [700]*2 + [700]*2 + [700]*1 #设置节点的大小#显示图
nx.draw(G, with_labels= True, font_weight ='bold', font_color = 'w', node_color =ncolor, node_size =nsize)
plt.show()#借用nx构造邻接矩阵
A = np.array(nx.adjacency_matrix(G).todense())
print(A)#构造特征矩阵X
X = np.array([[i,-i, i+2] for i in  range (A.shape[0])])
print(X)#为了不丢失自己的属性,需要修改本身的邻接矩阵,因为最初邻接矩阵的斜对角线为0
I = np.eye(A.shape[0])
A_hat = A + I
print('A_hat')
print(A_hat)#计算自环邻接矩阵的度
D_hat = np.diag(np.sum(A_hat,axis= 0 ))
print(D_hat)#获取D——hat的逆矩阵,即一个缩放因子
D_1 = np.diag(D_hat) ** (-1) *np.eye(A_hat.shape[0])
print('D_1')
print(D_1)#缩放版的邻接矩阵
A_scale = D_1 @ A_hat  #对矩阵A仅仅进行了列方向上的缩放
print('A_scale')
print(A_scale)#用A_scale来聚合邻居节点的信息
X_new = A_scale @ X
print('X_new')
print(X_new)#修复原本的缩放的不对称性
scale_factor = D_1 @ A_hat @ D_1    #scale_factor 是对称的,而 A_scale是不对称 的
print('scale_factor')
print(scale_factor)#用scale_factor来聚合邻居节点的信息
X_new1 = scale_factor  @ X
print('X_new1')
print(X_new1)D_sq_half = np.diag(D_hat) ** (-0.5) *np.eye(A_hat.shape[0])
print('D_sq_half')
print(D_sq_half)#修复原本的缩放的不对称性
scale_factor2 = D_sq_half @ A_hat @ D_sq_half    #scale_factor 是对称的,而 A_scale是不对称 的
print('scale_factor2')
print(scale_factor2)#用scale_factor2来聚合邻居节点的信息
X_new2 = scale_factor2  @ X
print('X_new2')
print(X_new2)#给出的权值矩阵
W = np.array([[0.13,0.24],[0.37,-0.32],[0.14,-0.15]])X_new3 = X_new2 @ W
print(X_new3)#也可以缩减W的尺寸压缩节点的输出维度
W1 = np.array([[0.13],[0.37],[0.14]])
#计算logits
logits = X_new2 @ W1
print(logits)#以上都没有考虑到激活函数,无法模拟神经网络的非线性变换能力,可以使用激活函数
y = logits * (logits >0)  #使用Relu函数
print(y)#为了实现分类等功能,还需要添加一层Softmax
def softmax(x):return np.exp(x) /np.sum(np.exp(x), axis = 0)prob = softmax(y)
print('y')
print(y)#模拟一个分类输出
pred = np.argmax(prob)
print(pred)

这篇关于MPNN 模型:GNN 传递规则的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219974

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S