【自然语言处理与文本分析】PCA文本降维。奇异值分解SVD,PU分解法。无监督词嵌入模型Glove。有案例的将文本非结构化数据转化为结构化数据的方法。

本文主要是介绍【自然语言处理与文本分析】PCA文本降维。奇异值分解SVD,PU分解法。无监督词嵌入模型Glove。有案例的将文本非结构化数据转化为结构化数据的方法。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

无监督的词嵌入模型-Glove

背后的理念源头是主成分分析PCA

先变为SVD-Glove

PCA是为了产生比较精简的维度,让原始数据在这个精简的维度也能保持原始的变异(信息)。

方法1就是将x2降维到x1,它从9个点变成6个点,而且牺牲了很大的信息

比较好的方法就是建立一个新的维度u。尽可能保留资料的变异。

PCA也可以做词嵌入的降维。比如

我们将词袋模型进行PCA主成分降维度。经过我们降维之后,就可以变成稠密的矩阵。

我们会发现,社会映射到了同一个点上,

如果我们只选择1个维度,只保留了百分之51,我们可以发现选择2个因素,保留了百分之85的变异,也可以进行可视化。

结果我们发现经过PCA的降维之后的决策树也是2个因素。

然后我们把一个测试集导入

当然我们要按照PCA的公式把数值带入,得到FACTOR1和FACTOR2

结果也刚好得到娱乐的结果,十分准确。

另外我们看因子1,如果希望因子1的数值大,它要求方框里的因素都比较大,也就是方框中的值都比较大,才能被判定为国际新闻

因子二也是,只有日本,可口可乐,广告,都比较大,才能被判入娱乐新闻。也就是说,PCA之后的因子就变成综合考虑。

所以才会导致我们的数值更加正确。

W2d(PCA下)

刚才,我们是对词为输入变量进行PCA降维

选择我们可以把文件作为维度,进行PCA降维

这时我们就会发现,它会把同一个内容(国际,娱乐,社会)的词的数值非常接近,认为二者是同义词,所以w2d会保留同义词。

所以这个词嵌入模型也可以进行寻找同义词

我们再对它进行聚类。我们会发现,刚好会分为3类,并且是国际,社会,娱乐。

Matrix factorization

我们看右边的图,可以发现,医师joe会看3部电影,电影还会被其他的都人看。其他的人也会看其他的电影

我们把人和电影做矩阵就可以得到推荐评分表。上图就是横坐标是人纵坐标是电影。

我们就可以将它进行矩阵分解。Dk*k其实就是特征值

Eigen value和Eigen Vector的求解一般要求是正定矩阵,就是正方形。Use-item rating Matrix一般都不是正定矩阵。

D和V一般求出来的都是复数解,无法解释,在运用上有困难。

所以这个不太可行

为了解决这个问题,我们引进了奇异值分解法,它就算是长方形的矩阵也可以,并且结果一定是实数

SVD相当于类似于主成分,它将原矩阵分成3个矩阵,我们往往取topk个奇异值就可以表示绝大部分信息。

SVD的几何原理,就算通过线性变化,找出

原本1*n维的词向量,可以用1*k维的向量表示关键词。进而实现word embedding(词嵌入)的效果

图示如下:

前者就是物品,在新的两个维度下的数字,我们如果对它进行可视化,就会得到下面这个图,用户对那些物品感兴趣

后者就是用户,在新的维度下的,

如果物品靠的比较近说明喜欢该物品的人都差不多,如果人靠的比较近,说明该人喜欢的物品都差不多。

我们可以发现用户1和用户3是一致的,为什么呢,因为他们都是一起打高分,一起打低分。趋势是一致的。我们看这种图不能看数值的大小,要看打分的趋势。

物品二和物品3也是一样的,都是对用户13的评分高些,对用户二的评分低些,(人会喜欢打高分或者低分,不能决定什么,趋势才是重要的。)

我们如果只取两个因子,就可以达到可视化的目的。

因为不一定每个人都会把所有的电影都看了,所有的项目都看了。所以会出现下图,稀疏矩阵的情况。SVD就不能分解了

此时我们应该用PU进行分解。可以得到下面这个结果

我们可以使用P*U分解,得到上图的情况。分解之后就可以将P*UT再乘回去,得到下图的情况      

我们乘积得到之后,我们就可以完善用户的评分,来对用户还未尝购买的项目进行推荐,得分高的就可以进行针对性的推荐。

案例2:我们要推荐顾客还没买的产品。下图就可以发现我们原本的数值的几乎没有差距,但是新值也会得到。我们对顾客还没买的数值。比如产品3Use3就很感兴趣。

P是把项目作为输入字段,降维。U是针对人物作为输入字段进行降维。

Glove:

这个看起来很新,但是其实是酒品黄小姐就PCA的一种

它通过借鉴Wordvec的Pair-wise的方法,以及一些其他的Trick来进行传统的矩阵分解运算得到wordVector(词嵌入向量)

案例:共线矩阵:

我们会提取全部的关键词,然后得到共线矩阵,我们把行叫做内容维度,、(context)列看成keyword关键词维度。

共线矩阵是怎么来的呢,我们就是看词前后有什么词,有一个就加一,我们会给对于的词进行设置数值。

下面是关键词,上面是关键词附近的文本

案例:

我们用一样的方式得到词共线矩阵。

这个顺序是词原来的顺序,因为它就算看词出现的概率

然后我们对这个进行PCA矩阵。

然后我们取了5个factor,因为这个关键词比较多所以我们就要取多一些主成分,确保有百分之80的变异信息被保留

然后我们计算词两两的距离。如果数值是很小的话就说明的同义词或者相关词。

距离非常远,就说明是完全不一样的大小。

Glove就可以吧同义词提取出来。

我们也可以运用Glove进行决策树:

我们发现只需要用,Factor3和factor1就可以进行决策

然后我们还是一样加入测试集合,来进行测试模型准确与否。显然是正确的。

则是glove决策树对第六个文章数据走的一个路线。

下次我们会针对有监督的词嵌入模型进行一个解说。

这篇关于【自然语言处理与文本分析】PCA文本降维。奇异值分解SVD,PU分解法。无监督词嵌入模型Glove。有案例的将文本非结构化数据转化为结构化数据的方法。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219829

相关文章

nginx负载均衡及详细配置方法

《nginx负载均衡及详细配置方法》Nginx作为一种高效的Web服务器和反向代理服务器,广泛应用于网站的负载均衡中,:本文主要介绍nginx负载均衡及详细配置,需要的朋友可以参考下... 目录一、 nginx负载均衡策略1.1 基本负载均衡策略1.2 第三方策略1.3 策略对比二、 nginx配置2.1

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例