双目立体匹配算法--归一化互相关(NCC)详解和代码实现(python)

本文主要是介绍双目立体匹配算法--归一化互相关(NCC)详解和代码实现(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理:

  • 对于原始的图像内任意一个像素点 ( p x , p y ) (p_x,p_y) (px,py)构建一个 n × n n\times n n×n的邻域作为匹配窗口。然后对于目标相素位置 ( p x + d , p y ) (p_x+d, p_y) (px+d,py)同样构建一个 n × n n\times n n×n大小的匹配窗口,对两个窗口进行相似度度量,注意这里的 d d d有一个取值范围。对于两幅图像来说,在进行 N C C NCC NCC计算之前要对图像处理,也就是将两帧图像校正到水平位置,即光心处于同一水平线上,此时极线是水平的,否则匹配过程只能在倾斜的极线方向上完成,这将消耗更多的计算资源。
  • N C C NCC NCC计算公式如下图所示:
    在这里插入图片描述
    其中 N C C ( p , d ) NCC(p,d) NCC(p,d)得到的值得范围将在 [ − 1 , 1 ] 之 间 [-1,1]之间 [1,1]
    W p W_p Wp为之前提到的匹配窗口。
    I 1 ( x , y ) I_1(x,y) I1(x,y)为原始图像的像素值。
    I 1 ‾ ( p x , p y ) \overline{I_1}(p_x,p_y) I1(px,py)为原始窗口内像素的均值。
    I 2 ( x + d , y ) I_2(x+d,y) I2(x+d,y)为原始图像在目标图像上对应点位置在 x x x方向上偏移 d d d后的像素值。
    I 2 ‾ ( p x + d , p y ) \overline{I_2}(p_x+d, p_y) I2(px+d,py)为目标图像匹配窗口像素均值。
  • N C C = − 1 NCC = -1 NCC=1,则表示两个匹配窗口完全不相关,相反,若 N C C = 1 NCC = 1 NCC=1时,表示两个匹配窗口相关程度非常高。

匹配流程

  • 采集图像:通过标定好的双目相机采集图像,当然也可以用两个单目相机来组合成双目相机。
  • 极线校正:校正的目的是使两帧图像极线处于水平方向,或者说是使两帧图像的光心处于同一水平线上。通过校正极线可以方便后续的 N C C NCC NCC操作。
    • 由标定得到的内参中畸变信息中可以对图像去除畸变。
    • 通过校正函数校正以后得到相机的矫正变换R和新的投影矩阵P,接下来是要对左右视图进行去畸变,并得到重映射矩阵。
  • 特征匹配:这里便是我们利用 N C C NCC NCC做匹配的步骤啦,匹配方法如上所述,右视图中与左视图待测像素同一水平线上相关性最高的即为最优匹配。完成匹配后,我们需要记录其视差d,即待测像素水平方向xl与匹配像素水平方向xr之间的差值 d = x r − x l d = x_r - x_l d=xrxl,最终我们可以得到一个与原始图像尺寸相同的视差图 D D D
  • 深度恢复:通过上述匹配结果得到的视差图 D D D,我们可以很简单的利用相似三角形反推出以左视图为参考系的深度图。计算原理如下图所示:

在这里插入图片描述

如图, T x Tx Tx为双目相机基线, f f f为相机焦距,这些可以通过相机标定步骤得到。而 x r − x l xr - xl xrxl就是视差 d d d

通过公式 z = z = z= f × T x d {f \times Tx }\over d df×Tx可以很简单地得到以左视图为参考系的深度图了。

至此,我们便完成了双目立体匹配。倘若只是用于图像识别,那么到步骤3时已经可以结束了。

代码实现:

  • 本次使用的图片为:
    • 左图:
      在这里插入图片描述
    • 右图:
      在这里插入图片描述
  • 图片下载网址为:http://vision.middlebury.edu/stereo/data/scenes2003/ 已经经过矫正。
  • 版本1(运行较慢)
import numpy as np
import cv2
import mathim1 = 'im2.ppm'
im2 = 'im6.ppm'
img1 = cv2.imread(im1, cv2.CV_8UC1)
img2 = cv2.imread(im2, cv2.CV_8UC1)
rows, cols = img1.shape
print(img1.shape)
#用3*3卷积核做均值滤波def NCC(img1,img2,avg_img1,avg_img2,disparity,NCC_value,deeps, threshold,max_d, min_rows, max_rows):#设立阈值ncc_value = thresholdif min_rows == 0:min_rows += 1for i in range(3, max_rows - 3):for j in range(3, cols-3):if j < cols - max_d-3:max_d1 = max_delse:max_d1 = cols - j - 3for d in range(4, max_d1):#减一防止越界ncc1 = 0ncc2 = 0ncc3 = 0for m in range(i-3, i+4):for n in range(j-3, j+4):ncc1 += (img2[m, n] - avg_img2[i, j])*(img1[m, n+d]-avg_img1[i, j+d])ncc2 += (img2[m, n] - avg_img2[i, j])*(img2[m, n] - avg_img2[i, j])ncc3 += (img1[m, n+d]-avg_img1[i, j+d])*(img1[m, n+d]-avg_img1[i, j+d])ncc_b = math.sqrt(ncc2*ncc3)ncc_p_d = 0if ncc_b != 0:ncc_p_d = ncc1/(ncc_b)if ncc_p_d > ncc_value:ncc_value = ncc_p_ddisparity[i, j] = dNCC_value[i ,j] = ncc_p_dncc_value = thresholdprint("iter{0}".format(i))if __name__ == "__main__":disparity = np.zeros([rows, cols])NCC_value = np.zeros([rows, cols])deeps = np.zeros([rows, cols])# 用3*3卷积核做均值滤波avg_img1 = cv2.blur(img1, (7, 7))avg_img2 = cv2.blur(img2, (7, 7))img1 = img1.astype(np.float32)img2 = img2.astype(np.float32)avg_img1 = avg_img1.astype(np.float32)NCC(img1,img2,avg_img1,avg_img2, disparity, NCC_value,deeps, 0.6,64,0,150)disp = cv2.normalize(disparity, disparity, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX,dtype=cv2.CV_8U)cv2.imshow("depth", disp)cv2.waitKey(0)  # 等待按键按下cv2.destroyAllWindows()#清除所有窗口print(NCC_value)
  • 运行结果:
    在这里插入图片描述
  • 版本2:(运行快)
    • 已上传至我的 G i t h u b Github Github:sunrise666

参考博客:

双目立体匹配——归一化互相关(NCC)

这篇关于双目立体匹配算法--归一化互相关(NCC)详解和代码实现(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219682

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四: