【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM

本文主要是介绍【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章摘要

针对动态环境,提出了一种基于实时深度边缘的RGB_D SLAM系统。这个系统与现有的最先进的动态环境方法相比,可以显著地减小跟踪误差。

研究背景与论文工作

导航定位随着相机成本的减小发展越来越快,其中在SLAM系统中扮演者很重要角色的视觉测量仍不成熟。目前最先进的研究方法都是假定环境是静态的,忽略了动态环境中经常出现的人、物等因素的影响。而视觉测量目前主要分为两大阵营,一种是上一篇文章里写道的Dense Visual SLAM for RGB-D Cameras里面提到的密集视觉测量方法,而另一种是基于特征对应的视觉测量方法。在这两种方法中为了补偿动态点,都需要进行或多或少地特征对应,这是十分耗时的。
本文提出通过深度边缘点的对应来进行视觉测量。深度边缘点的密度很低,可以进行有效得匹配;而另一方面,深度边缘点反映了环境的纹理。在这里插入图片描述如上图,这里提取的全部是环境中的深度边缘点,既反映了环境的纹理,同时也能进行有效地匹配。

基于前景边缘的视觉测量法

总述

前景边缘首先只提取图片的边缘点作为估计,然后每隔N张图选取一张作为关键帧,关键帧则是用来进行静态权值估计的。得到的静态权值则可以反映出这个点属于静态环境的可能性有多大。静态权值还可以用来与IAICP算法相结合用来削减变换估计中动态移动物体的影响。

前景边缘点与遮挡边缘点

前景边缘点是指靠近摄像机的物体的边缘的点,这些点的特征是对相机的运动比较稳定,不会随着相机的运动出现几何误差,而遮挡边缘点则会因为相机的移动而非常敏感。所以在评估相机位置时候应该要排除遮挡边缘点的干扰。

静态权值估计

在这里插入图片描述图片中第二排是识别出来的前景边缘点,第三排是通过静态权值计算得出的结果,红色为动态物体的边缘,二绿色则是静态物体的边缘。

由于具体如何评估静态权值的理论部分和闭环检测部分尚且不懂,我直接跳过,下面阐述实验结果

实验结果

此前很多前辈的实验都是通过 TUM RGB-D dataset来做的,结果都非常得棒,可是缺少了对图片中动态物体的评估。

视觉测量方法评估

在这里插入图片描述

1) Effect of Static Weighting

:The average improvement in terms of translational drift for low-dynamic sequences is 8%, and for high-dynamic sequences, the average improvement is 52%. This verifies that our static weighting strategy effectively reduces the influence of dynamic objects, especially for high-dynamic environments.

2) Effect of Static Weight Initialization:

在这里插入图片描述a图没有静态权重初始化则人身上的很多点会被当成是静态物体,b图加入了静态权重初始化,则人身上的边缘点区分得更好。

3) Comparison With Previous Methods:

Dense Visual Odometry (DVO):目前最先进的静态处理方案,但是只适用于有小部分动态点的情况。
model-based dense-visual-odometry (BaMVO):为动态环境设计的方案。
结论: Our method improves the visual odometry performance by 74.6% compared to DVO, and by 58.2% compared to BaMVO.
我们的方案基本上在所有的动态环境中表现都是最好的,甚至在静态环境中表现也最好。

结合后的SLAM系统评估

在这里插入图片描述

这篇关于【论文笔记】RGB-D SLAM in Dynamic Environments Using Static Point Weighting(静态权值策略)在动态环境中使用静态点加权的RGB_DSLAM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/217994

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖