动态规划:918. 环形子数组的最大和

2023-10-15 13:12

本文主要是介绍动态规划:918. 环形子数组的最大和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

个人主页 : 个人主页
个人专栏 : 《数据结构》 《C语言》《C++》《算法》

文章目录

  • 前言
  • 一、题目解析
  • 二、解题思路
    • 解题思路
    • 状态表示
    • 状态转移方程
    • 初始化
    • 填表顺序
    • 返回值
  • 三、代码实现
  • 总结


前言

本篇文章仅是作为小白的我的一些理解,,如果有错误的地方,希望大佬们指出。


918. 环形子数组的最大和

一、题目解析

在这里插入图片描述
求环型数组中连续子数组最大和。

二、解题思路

解题思路

关于子数组的最大和,其有两种情况。
在这里插入图片描述
对于情况1而言,我们只需要正常使用dp求最大子数组和即可。
对于情况2而言,如果我们使用前缀和 与 后缀和 求和来求最大子数组和就相对麻烦,但如果我们先求最小子数组和呢?
在这里插入图片描述

情况二:求最大子数组和,就可以转换为数组和(sum) - 最小子数组和。

状态表示

该题的状态表示:经验(以该位置为终点 / 以该位置为起点) + 题目要求
在这里插入图片描述
那么对于情况1记为 f() ,f [ i ]表示以 i 位置为终点的所以子数组的最大和。
那么对于情况2记为 g(),g [ i ]表示以 i 位置为终点的所以子数组的最小和。

状态转移方程

情况1
对于在数组 i 位置的元素,我们可以将其分成两个状态。
在这里插入图片描述

即 f [i]的长度等于1,和 f [i]的长度大于1。
当 f [i]的长度等于1时,此时子数组最大和不就是该元素的大小,即f [i] = nums[i]
当 f [i]的长度大于1时,此时子数组最大和不就是 之前子数组最大和(f[i-1]) + 该元素大小,即f[i] = f[i-1] + nums[i]
那么我们对这两种情况取最大值即可得 f [ i ] 的状态转移方程。
在这里插入图片描述

情况2
和情况1类似,对于情况2,我们同样可以以 i位置,分成两种状态。
在这里插入图片描述
即 g [i]的长度等于1,和 g [i]的长度大于1。
当 g [i]的长度等于1时,此时子数组最小和不就是该元素的大小,即g [i] = nums[i]
当 g [i]的长度大于1时,此时子数组最小和不就是 之前子数组最小和(g[i-1]) + 该元素大小,即g[i] = g[i-1] + nums[i]
那么我们对这两种状态取最小值,既可以得到 g [i]的状态转移方程
在这里插入图片描述

初始化

我们要求 f [i]就要先知道 f [i -1],但如果当 i = 0时,f [i-1]就会越界。那么我们虚拟一块空间,将整个 f[i] 后移一个位置。如下所示:
在这里插入图片描述
如果我们进行这样的操作,有两点需要注意。

  • 如何填写 f[0]保证后续填表结果正确?
    只要f[0] = 0即可,毕竟f[1] = max(f[0], f[0]+nums[0])此时f[0] == f[0] + nums[0]
  • 映射关系
    因为整个f[i]后移了一个,所以f[i] 所对应的元素 nums[i]相对前移了,即f[i] 与 nums[i-1]的元素相对应。

填表顺序

要求f[i],就要先知道f[i-1],那么我们就要从前向后遍历数组nums,来填表。

返回值

我们只需要 返回情况1 与 情况2 的最大值即可。
但对于{-1, -2, -3, -4}而言,情况2 的值是:sum(-10) - gmin(-10)等于0,情况1 的值是:fmax(-1)。那么返回值就是0,结果错误。所以要先判断gmin == sum,如果相等,表示此时数组全是负数,返回fmax即可。如果不相等,返回情况1 与 情况2 的最大值即可。

三、代码实现

class Solution {
public:int maxSubarraySumCircular(vector<int>& nums) {int n = nums.size();vector<int> f(n+1), g(n+1);int fmax = INT_MIN, gmin = INT_MAX, sum = 0;for(int i = 1; i <= n; i++){f[i] = max(f[i-1] + nums[i-1], nums[i-1]);fmax = max(f[i], fmax);g[i] = min(g[i-1] + nums[i-1], nums[i-1]);gmin = min(g[i], gmin);sum += nums[i-1];}return sum == gmin? fmax: max(fmax, sum - gmin);}
};

总结

以上就是我对于环形子数组的最大和的理解。感谢支持!!!
在这里插入图片描述

这篇关于动态规划:918. 环形子数组的最大和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/217948

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-