摸不到Java的顶峰,咱就转战大数据,绝不在一棵树上吊死

2023-10-15 01:59

本文主要是介绍摸不到Java的顶峰,咱就转战大数据,绝不在一棵树上吊死,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章的目的是带那些对大数据不了解又有兴趣的人入门。如果你是老手可以忽略,或者想看看有没有不一样的东西也行。

我们学习一个新知识,第一步应该是给它个明确的定义。这样才能知道你学的是什么,哪些该学,哪些又可以先不用管。

然而,大数据虽然很火,但其实是个概念没那么清晰的东西,不同的人可能有不同的理解。

这次我们不去纠结具体的定义,也忽略那些 4 个 V、6 个 C 之类传统说教的东西,甚至不想聊架构演进以及各种调优的方法,这些东西讲了大家也不一定懂,懂了也记不住,记住了也用不起来。

我们也不去关注 AI、Machine Learning 那些炫酷的应用层面的东西,而是去看看大数据这栋房子的地基是什么模样。限于篇幅,很多技术细节点到即止,有兴趣的同学可以再按需了解,这也正是入门的含义所在。

首先第一个问题,大数据,大数据,多大叫大?或者换一个角度,什么时候需要用到大数据相关的技术?

这依然是个没有标准答案的问题,有些人可能觉得几十 G 就够大了,也有人觉得几十 T 也还好。当你不知道多大叫大,或者当你不知道该不该用大数据技术的时候,通常你就还不需要它。

而当你的数据多到单机或者几台机器存不下,即使存得下也不好管理和使用的时候;当你发现用传统的编程方式,哪怕多进程多线程协程全用上,数据处理速度依然很不理想的时候;当你碰到其他由于数据量太大导致的实际问题的时候,可能你需要考虑下是不是该尝试下大数据相关的技术。

从刚才的例子很容易能抽象出大数据的两类典型应用场景:

  • 大量数据的存储,解决装不下的问题。
  • 大量数据的计算,解决算得慢的问题。

因此,大数据的地基也就由存储和计算两部分组成。

我们在单机,或者说数据量没那么大的时候,对于存储有两种需求:

  • 文件形式的存储
  • 数据库形式的存储

文件形式的存储是最基本的需求,比如各个服务产生的日志、爬虫爬来的数据、图片音频等多媒体文件等等。对应的是最原始的数据。

数据库形式的存储则通常是处理之后可以直接供业务程序化使用的数据,比如从访问日志文件里处理得到访问者 ip、ua 等信息保存到关系数据库,这样就能直接由一个 web 程序展示在页面上。对应的是处理后方便使用的数据。

大数据也只是数据量大而已,这两种需求也一样。虽然不一定严谨,但前者我们可以叫做离线(offline)存储,后者可以叫做在线(online)存储。

离线存储这块 HDFS(Hadoop Distributed File System) 基本上是事实上的标准。从名字可以看出,这是个分布式的文件系统。实际上,「分布式」也是解决大数据问题的通用方法,只有支持无限横向扩展的分布式系统才能在理论上有解决无限增长的数据量带来的问题的可能性。当然这里的无限要打个引号。

 

这是 HDFS 的简易架构图,看起来仍然不太直观,其实要点只有几句话:

  • 文件被以 block 为单位拆分后存放在不同的服务器上,每个 block 都在不同机器上做了多份冗余。
  • 有 NameNode 和 DataNode 两种角色,前者存放元数据也就是每个 block 保存在哪里,后者负责存放实际数据。
  • 读和写数据都要先向 NameNode 拿到对应文件的元数据,然后再找对应的 DataNode 拿实际的数据。

可以看到,HDFS 通过集中记录元数据的方式实现了分布式的效果,数据量增长只需要添加一些新的 DataNode 就可以了,单机容量不再是限制。

而为了保证数据的高可用,比如某台服务器突然坏了再也起不来了,HDFS 通过冗余的方式(通常是 3 副本)来解决这个问题。这也是分布式系统里最常用的高可用方式,虽然成本可能很高。

系统级别的高可用才有意义,所以除了数据的高可用,元数据的高可用也至关重要。思路一样 -- 备份。HDFS 提供了 Secondary NameNode 来提供元数据的冗余。当然更好的方式是使用 NameNode HA 的方式,通过 active/standby 一组 NameNode 来保证不间断的元数据读写服务。

同样,扩展性刚才也只考虑到数据的横向扩展,元数据呢?当数据量大到一定程度,元数据也会非常大,类似我们在传统关系数据库里碰到的索引膨胀的问题。解决的思路是 NameNode Federation。简单讲就是把原来的一组 active/standy NameNode 拆分成多组,每组只管理一部分元数据。拆分后以类似我们在 Linux 系统里挂载(mount)硬盘的方法对外作为整体提供服务。这些 NameNode 组之间相互独立,2.x 版本的 HDFS 通过 ViewFS 这个抽象在客户端通过配置的方式实现对多组 NameNode 的透明访问,3.x 版本的 HDFS 则实现了全新的 Router Federation 来在服务端保证对多组 NameNode 的透明访问。

可以看到,元数据的横向扩展和实际数据的横向扩展思路完全一样,都是拆分然后做成分布式。

和离线存储对应的是在线存储,可以参照传统的 MySQL、Oracle 等数据库来理解。在大数据领域最常用的是 H

这篇关于摸不到Java的顶峰,咱就转战大数据,绝不在一棵树上吊死的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/214628

相关文章

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再