【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码)

2023-10-14 18:52

本文主要是介绍【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 前言

按照国际惯例,首先声明:本文只是我自己学习的理解,虽然参考了他人的宝贵见解,但是内容可能存在不准确的地方。如果发现文中错误,希望批评指正,共同进步。

本文基于PyTorch通过tensor点积所需要的时间来对比GPU与CPU的计算速度,并介绍tensorboard的使用方法。

我在前面的科普文章——GPU如何成为AI的加速器GPU如何成为AI的加速器_使者大牙的博客-CSDN博客GPU如何成为AI的加速器 解释了GPU的多核心架构相比CPU更适合简单大量的计算,而深度学习计算的底层算法就是大量矩阵的点积和相加,本文将通过张量的点积运算来说明:与CPU相比,GPU有多“适合”深度学习算法。

加法相比于点积的计算量太小了,我感觉体现不出GPU的优势,所以没有用加法来对比两者的算力差距。

1. 准备工作

1.0 一台有Nvidia独立显卡的电脑

既然要使用GPU计算,一台有Nvidia独立显卡=支持CUDA的GPU的电脑就是必须的前置条件。如果不清楚CUDA、GPU和Nvidia关系的同学,可以再看下我的文章:GPU如何成为AI的加速器_使者大牙的博客-CSDN博客

1.1 PyTorch

在PyTorch的官网:Start Locally | PyTorch 选择合适的版本:

这里需要注意的是PyTorch的CUDA版本需要匹配电脑的GPU的CUDA版本,一般来说电脑>PyTorch的CUDA版本就没问题了。

例如我安装的PyTorch是CUDA 11.8版本,我的GPU驱动版本是12.2(查看路径:Nvidia控制面板>帮助>系统信息)。

1.2 Tensorboard

Tensorboard是TensorFlow官方提供的一个可视化工具,用于可视化训练过程中的模型图、训练误差、准确率、训练后的模型参数等,同时还提供了交互式的界面,让用户可以更加方便、直观地观察和分析模型。

这里需要注意的是Tensorboard虽然是由TensorFlow提供的,但是使用Tensorboard不需要安装TensorFlow!只要在虚拟环境下安装TensorboardX和Tensorboard即可,我使用的是Anaconda Prompt:

pip install tensorboardX
pip install tensorboard

其使用方法为:

from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("../logs")  #这里有两个"."writer.add_scalars(main_tag, tag_scalar_dict, global_step=None):writer.close()

另外需要注意SummaryWriter后面的路径要有两个“.”,这是因为我的代码文件在D:\DL\CUDA_test二级文件夹下面,我们需要把生成的tensorboard的event文件放在D:\DL\logs下面,而不是D:\DL\CUDA_test\logs路径下。这样做的理由是避免tensorboard报“No scalar data was found”

这里使用的是.add_scalars()方法来绘制多条曲线,参数如下:

  • main_tag:字符串类型,要绘制的曲线主标题,本实例为“GPU vs CPU”
  • tag_scalar_dict:字典类型,要绘制多条曲线的因变量,本实例为GPU和CPU的计算时间
    {'GPU':CUDA,'CPU':CPU}
  • global_step: 标量,要绘制多条曲线的因变量,本实例为张量的大小tensor_size

在event文件生成后再在PyCharm的终端输入 tensorboard --logdir=logs ,点击链接就可以在浏览器中查看生成的曲线了。

2. 对比GPU与CPU的计算速度

本文的实例问题非常简单:分别使用CPU和GPU对尺寸为[tensor_size, tensor_size]的2个张量进行点积运算,使用time库工具对计算过程进行计时,对比CPU和GPU所消耗的时间。张量的大小tensor_size取值从1到10000。

我使用的硬件信息如下:

CPU:AMD Ryzen 9 7940H

GPU:NVIDIA GeForce RTX 4060

CPU计算时间:

import torch
import timedef CPU_calc_time(tensor_size):a = torch.rand([tensor_size,tensor_size])b = torch.rand([tensor_size,tensor_size])start_time = time.time()torch.matmul(a,b)end_time = time.time()return end_time - start_time

GPU计算时间:

import torch
import timedef CUDA_calc_time(tensor_size):device = torch.device('cuda')a = torch.rand([tensor_size,tensor_size]).to(device)b = torch.rand([tensor_size,tensor_size]).to(device)start_time = time.time()torch.matmul(a,b).to(device)end_time = time.time()return end_time - start_time

3. 结果分析

最终生成的CPU和GPU计算张量点积的时间曲线如下:

从图中可以看出,随着张量尺寸的增大,CPU计算时间明显增加(0~11.3s),而GPU的计算时间基本不变(0.001s左右),张量尺寸越大GPU的计算优势就越明显。

4. 完整代码

import torch
import time
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdmtorch.manual_seed(1)def CPU_calc_time(tensor_size):a = torch.rand([tensor_size,tensor_size])b = torch.rand([tensor_size,tensor_size])start_time = time.time()torch.matmul(a,b)end_time = time.time()return end_time - start_timedef CUDA_calc_time(tensor_size):device = torch.device('cuda')a = torch.rand([tensor_size,tensor_size]).to(device)b = torch.rand([tensor_size,tensor_size]).to(device)start_time = time.time()torch.matmul(a,b).to(device)end_time = time.time()return end_time - start_timeif __name__ == "__main__":writer = SummaryWriter("../logs")for tensor_size in tqdm(range(1,10000,50)):CPU = CPU_calc_time(tensor_size)CUDA = CUDA_calc_time(tensor_size)writer.add_scalars('GPU vs CPU',{'GPU':CUDA,'CPU':CPU},tensor_size)writer.close()# Command Prompt   "tensorboard --logdir=logs"

这篇关于【PyTorchTensorBoard实战】GPU与CPU的计算速度对比(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/212463

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

详解MySQL中JSON数据类型用法及与传统JSON字符串对比

《详解MySQL中JSON数据类型用法及与传统JSON字符串对比》MySQL从5.7版本开始引入了JSON数据类型,专门用于存储JSON格式的数据,本文将为大家简单介绍一下MySQL中JSON数据类型... 目录前言基本用法jsON数据类型 vs 传统JSON字符串1. 存储方式2. 查询方式对比3. 索引

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1