关于蘑菇数据集的探索分析

2023-10-14 12:40
文章标签 分析 数据 探索 蘑菇

本文主要是介绍关于蘑菇数据集的探索分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集描述

来源于kaggle的蘑菇数据集,包括毒性,大小,表面,颜色等,所有数据均为字符串类型,分析毒性与其他属性的关系

读取数据集

dataset = pd.read_csv("./mushrooms.csv")
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8124 entries, 0 to 8123
Data columns (total 23 columns):
class                       8124 non-null object
cap-shape                   8124 non-null object
cap-surface                 8124 non-null object
cap-color                   8124 non-null object
bruises                     8124 non-null object
odor                        8124 non-null object
gill-attachment             8124 non-null object
gill-spacing                8124 non-null object
gill-size                   8124 non-null object
gill-color                  8124 non-null object
stalk-shape                 8124 non-null object
stalk-root                  8124 non-null object
stalk-surface-above-ring    8124 non-null object
stalk-surface-below-ring    8124 non-null object
stalk-color-above-ring      8124 non-null object
stalk-color-below-ring      8124 non-null object
veil-type                   8124 non-null object
veil-color                  8124 non-null object
ring-number                 8124 non-null object
ring-type                   8124 non-null object
spore-print-color           8124 non-null object
population                  8124 non-null object
habitat                     8124 non-null object
dtypes: object(23)
memory usage: 1.4+ MB

可以发现,一共包括23个属性,没有缺失值

直观分析——颜色鲜艳的蘑菇都有毒?

poison = dataset[dataset["class"] == "p"]["cap-color"]
not_poison = dataset[dataset["class"] != "p"]["cap-color"]
# print(pd.value_counts(not_poison))
poison_color = pd.concat([pd.value_counts(poison),pd.value_counts(not_poison),pd.value_counts(dataset["cap-color"])],axis=1,keys=["poison","normal","all"])
poison_color = poison_color.fillna(value=0)
# print(poison_color)
poison_color = poison_color.groupby(poison_color.columns,axis=1).apply(lambda x:x / x.sum())
print(poison_color.sort_values(by="poison").loc[["p","b","y","e"]])
     poison    normal       all
p  0.022472  0.013308  0.017725
b  0.030644  0.011407  0.020679
y  0.171604  0.095057  0.131955
e  0.223698  0.148289  0.184638

可得还是有一定道理的,尤其是黄色和红色的蘑菇

相关性分析——判断各指标与毒性相关性

计算各不同指标下有毒的概率判断单独指标与毒性之间的关系

def analysis_poison(data,index_name):data["class"].replace({"p":1,"e":0},inplace=True)return data.groupby([index_name])["class"].sum() / pd.value_counts(data[index_name])
#     pd.value_counts(a)
# analysis_poison(dataset[["class","cap-color"]],"cap-color")   
plt.close()
plt.figure(figsize=(16,30))
i = 1
danger=[]
for index_name in dataset.columns[1:]:result = analysis_poison(dataset[["class",index_name]],index_name)ax = plt.subplot(6,4,i)ax.set_title(index_name)result.plot(kind="bar")temp = result[result > 0.75]temp = temp.rename(index=lambda x:":".join([index_name,x]))danger.append(temp)
#     plt.bar(range(len(result)),result.data)i += 1
plt.show()
pd.concat(danger)
c:\users\qiank\appdata\local\programs\python\python35\lib\site-packages\pandas\core\generic.py:3924: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrameSee the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copyself._update_inplace(new_data)
7241055-3513c2fcc1979c3f.png
分析结果
cap-shape:c                   1.000000
cap-surface:g                 1.000000
odor:c                        1.000000
odor:f                        1.000000
odor:m                        1.000000
odor:p                        1.000000
odor:s                        1.000000
odor:y                        1.000000
gill-size:n                   0.885350
gill-color:b                  1.000000
gill-color:r                  1.000000
stalk-surface-above-ring:k    0.939292
stalk-surface-below-ring:k    0.937500
stalk-color-above-ring:b      1.000000
stalk-color-above-ring:c      1.000000
stalk-color-above-ring:n      0.964286
stalk-color-above-ring:y      1.000000
stalk-color-below-ring:b      1.000000
stalk-color-below-ring:c      1.000000
stalk-color-below-ring:n      0.875000
stalk-color-below-ring:y      1.000000
veil-color:y                  1.000000
ring-number:n                 1.000000
ring-type:l                   1.000000
ring-type:n                   1.000000
spore-print-color:h           0.970588
spore-print-color:r           1.000000
spore-print-color:w           0.758794
habitat:p                     0.881119
dtype: float64

由上可以发现气味,菌褶颜色,孢子颜色是区分度最大的特征

模型训练——使用决策树模型

数据预处理

特征向量化

model_label = dataset["class"].replace({"p":1,"e":0})
model_dataset = pd.get_dummies(dataset.drop(["class"],axis=1))
print(model_dataset.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8124 entries, 0 to 8123
Columns: 117 entries, cap-shape_b to habitat_w
dtypes: uint8(117)
memory usage: 928.3 KB
None

切分数据集

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(model_dataset,model_label,test_size=0.1,random_state=33)
print(x_train.info())
print(x_test.info())
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7311 entries, 6849 to 7188
Columns: 117 entries, cap-shape_b to habitat_w
dtypes: uint8(117)
memory usage: 892.5 KB
None
<class 'pandas.core.frame.DataFrame'>
Int64Index: 813 entries, 851 to 4472
Columns: 117 entries, cap-shape_b to habitat_w
dtypes: uint8(117)
memory usage: 99.2 KB
None

模型构建

from sklearn.tree import  DecisionTreeClassifier
tr = DecisionTreeClassifier()
tr.fit(x_train,y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,max_features=None, max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, presort=False, random_state=None,splitter='best')

模型评估

tr.score(x_test,y_test)
1.0

这篇关于关于蘑菇数据集的探索分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210593

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=