关于蘑菇数据集的探索分析

2023-10-14 12:40
文章标签 分析 数据 探索 蘑菇

本文主要是介绍关于蘑菇数据集的探索分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集描述

来源于kaggle的蘑菇数据集,包括毒性,大小,表面,颜色等,所有数据均为字符串类型,分析毒性与其他属性的关系

读取数据集

dataset = pd.read_csv("./mushrooms.csv")
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8124 entries, 0 to 8123
Data columns (total 23 columns):
class                       8124 non-null object
cap-shape                   8124 non-null object
cap-surface                 8124 non-null object
cap-color                   8124 non-null object
bruises                     8124 non-null object
odor                        8124 non-null object
gill-attachment             8124 non-null object
gill-spacing                8124 non-null object
gill-size                   8124 non-null object
gill-color                  8124 non-null object
stalk-shape                 8124 non-null object
stalk-root                  8124 non-null object
stalk-surface-above-ring    8124 non-null object
stalk-surface-below-ring    8124 non-null object
stalk-color-above-ring      8124 non-null object
stalk-color-below-ring      8124 non-null object
veil-type                   8124 non-null object
veil-color                  8124 non-null object
ring-number                 8124 non-null object
ring-type                   8124 non-null object
spore-print-color           8124 non-null object
population                  8124 non-null object
habitat                     8124 non-null object
dtypes: object(23)
memory usage: 1.4+ MB

可以发现,一共包括23个属性,没有缺失值

直观分析——颜色鲜艳的蘑菇都有毒?

poison = dataset[dataset["class"] == "p"]["cap-color"]
not_poison = dataset[dataset["class"] != "p"]["cap-color"]
# print(pd.value_counts(not_poison))
poison_color = pd.concat([pd.value_counts(poison),pd.value_counts(not_poison),pd.value_counts(dataset["cap-color"])],axis=1,keys=["poison","normal","all"])
poison_color = poison_color.fillna(value=0)
# print(poison_color)
poison_color = poison_color.groupby(poison_color.columns,axis=1).apply(lambda x:x / x.sum())
print(poison_color.sort_values(by="poison").loc[["p","b","y","e"]])
     poison    normal       all
p  0.022472  0.013308  0.017725
b  0.030644  0.011407  0.020679
y  0.171604  0.095057  0.131955
e  0.223698  0.148289  0.184638

可得还是有一定道理的,尤其是黄色和红色的蘑菇

相关性分析——判断各指标与毒性相关性

计算各不同指标下有毒的概率判断单独指标与毒性之间的关系

def analysis_poison(data,index_name):data["class"].replace({"p":1,"e":0},inplace=True)return data.groupby([index_name])["class"].sum() / pd.value_counts(data[index_name])
#     pd.value_counts(a)
# analysis_poison(dataset[["class","cap-color"]],"cap-color")   
plt.close()
plt.figure(figsize=(16,30))
i = 1
danger=[]
for index_name in dataset.columns[1:]:result = analysis_poison(dataset[["class",index_name]],index_name)ax = plt.subplot(6,4,i)ax.set_title(index_name)result.plot(kind="bar")temp = result[result > 0.75]temp = temp.rename(index=lambda x:":".join([index_name,x]))danger.append(temp)
#     plt.bar(range(len(result)),result.data)i += 1
plt.show()
pd.concat(danger)
c:\users\qiank\appdata\local\programs\python\python35\lib\site-packages\pandas\core\generic.py:3924: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrameSee the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copyself._update_inplace(new_data)
7241055-3513c2fcc1979c3f.png
分析结果
cap-shape:c                   1.000000
cap-surface:g                 1.000000
odor:c                        1.000000
odor:f                        1.000000
odor:m                        1.000000
odor:p                        1.000000
odor:s                        1.000000
odor:y                        1.000000
gill-size:n                   0.885350
gill-color:b                  1.000000
gill-color:r                  1.000000
stalk-surface-above-ring:k    0.939292
stalk-surface-below-ring:k    0.937500
stalk-color-above-ring:b      1.000000
stalk-color-above-ring:c      1.000000
stalk-color-above-ring:n      0.964286
stalk-color-above-ring:y      1.000000
stalk-color-below-ring:b      1.000000
stalk-color-below-ring:c      1.000000
stalk-color-below-ring:n      0.875000
stalk-color-below-ring:y      1.000000
veil-color:y                  1.000000
ring-number:n                 1.000000
ring-type:l                   1.000000
ring-type:n                   1.000000
spore-print-color:h           0.970588
spore-print-color:r           1.000000
spore-print-color:w           0.758794
habitat:p                     0.881119
dtype: float64

由上可以发现气味,菌褶颜色,孢子颜色是区分度最大的特征

模型训练——使用决策树模型

数据预处理

特征向量化

model_label = dataset["class"].replace({"p":1,"e":0})
model_dataset = pd.get_dummies(dataset.drop(["class"],axis=1))
print(model_dataset.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8124 entries, 0 to 8123
Columns: 117 entries, cap-shape_b to habitat_w
dtypes: uint8(117)
memory usage: 928.3 KB
None

切分数据集

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(model_dataset,model_label,test_size=0.1,random_state=33)
print(x_train.info())
print(x_test.info())
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7311 entries, 6849 to 7188
Columns: 117 entries, cap-shape_b to habitat_w
dtypes: uint8(117)
memory usage: 892.5 KB
None
<class 'pandas.core.frame.DataFrame'>
Int64Index: 813 entries, 851 to 4472
Columns: 117 entries, cap-shape_b to habitat_w
dtypes: uint8(117)
memory usage: 99.2 KB
None

模型构建

from sklearn.tree import  DecisionTreeClassifier
tr = DecisionTreeClassifier()
tr.fit(x_train,y_train)
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,max_features=None, max_leaf_nodes=None,min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fraction_leaf=0.0, presort=False, random_state=None,splitter='best')

模型评估

tr.score(x_test,y_test)
1.0

这篇关于关于蘑菇数据集的探索分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/210593

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro