游戏中的随机——“动态平衡概率”算法

2023-10-14 10:36

本文主要是介绍游戏中的随机——“动态平衡概率”算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

众所周知计算机模拟的随机是伪随机,但在结果看来依然和现实中的随机差别不大。
例如掷硬币,连续掷很多很多次之后,总有连续七八十来次同一个面朝上的情况出现,计算机中一般的随机函数也能很好模拟这一点。

但在游戏中,假如有一个50%概率会出现的情况,经常却连续七八十来次不出现,这样其实非常影响游戏体验。

那么为了增加这部分游戏体验,我们如何避免上述情况发生,使某个概率能在总体上较为均匀地分布呢?

例如现在有这样的需求:

A. 暴击率总体为20%
B. 要求每十次攻击,至少有一次暴击
C. 要求暴击的总体分布较为均匀

算法预览

经过一段时间的深思熟虑,笔者终于构建了一种名为“动态平衡概率”的算法。
虽然它还有一些局限性,但已经达到了基本可用的状态。

先上代码,为了方便演示图表,这里就用 python 了:

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
dynamicCritPercent = 0.2    # 动态暴击率
currentCritPercent = 0      # 当前暴击概率
deltaCritPercent = 0        # 当前暴击率与初始暴击率的差值(用来表示变化)
attackTotalCount = 0        # 总攻击次数
critTotalCount = 0          # 总暴击次数
noCritStreakCount = 0       # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
deltaCritPercentList = []
dynamicCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 获取最佳的 N
def find_optimal_N(p):# 从 1 到 500for i in range(1, 501):if(1 - p) ** i <= 0.05:return i# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查当前攻击数是否大于 0if attackTotalCount > 0:# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 计算当前暴击概率与初始暴击率的差值deltaCritPercent = abs(InitCritPercent - currentCritPercent)# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * pow(deltaCritPercent, 0.5)# 检查是否连续 N 次未暴击if noCritStreakCount < find_optimal_N(InitCritPercent) - 1:percent = random.random()if percent <= dynamicCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 将数据添加到列表中currentCritPercentList.append(currentCritPercent)deltaCritPercentList.append(deltaCritPercent)dynamicCritPercentList.append(dynamicCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.3f}", (i, currentCritPercentList[i]))# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].plot(deltaCritPercentList, label='Delta Crit Percent', color='g')
axs[0].plot(dynamicCritPercentList, label='Dynamic Crit Percent', color='b')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

给定参数的运行结果如下图所示
反向 目标0.2 次数14 倍率差值开平方 无限制1
0 ~ 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述
可以看出,总体暴击率会在大概300次内稳定下来,并且逐渐逼近 0.2;
在攻击次数足够多时,“动态暴击率”的浮动也会趋于稳定;
这是一种通过调整每次攻击的暴击率,来达到动态平衡效果的算法。

核心思路

以“暴击率”为例,以下是这种“动态平衡概率”算法的核心思路:

KaTeX parse error: No such environment: align* at position 8: \begin{̲a̲l̲i̲g̲n̲*̲}̲ \text{P} &: 初始…

其实本文到这里就结束了,这套算法虽然简单,但是笔者发现它的过程还是挺有意思的。

感兴趣的朋友可以继续往下看,文末还有一些优化思路…

发现

还是前文中的需求:

A. 暴击率总体为20%
B. 要求每十次攻击,至少有一次暴击
C. 要求暴击的总体分布较为均匀

假如每次暴击的概率都是0.2,并且每十次攻击至少一次暴击,这样相当于增加了总体最终的暴击数,也就是变相增加了暴击率,确实需要通过某种方式将最终结果调整到0.2.

目前笔者想到的实现方式大致分为两种:

一种是“动态概率”,我们可以随着实际已出现的概率,动态地调整下一次的概率,并保证在最终结果上符合我们的目标概率。
另一种是提前将“随机种子”做好。在制作“种子”时使用连续分段的、适当长度的数组,每段数组中目标出现的概率基本相同,且总体概率符合我们的目标概率。再人为打乱每段数组,最后将他们拼接起来。但是这种方式还有个问题,就是打乱数组之后可能会出现两个数组中的一个暴击在头一个在尾,两次暴击又会间隔较远的情况,无法完全保证 B 条件成立。

本文先尝试第一种方式————“动态概率”

以前面的需求为例,假如每次暴击的概率都是0.2,并且每十次攻击至少一次暴击,先这样在Unity中看一下最终的暴击率会高出多少

using UnityEngine;public class CriticalHit : MonoBehaviour
{// 初始暴击率public float InitCritPercent = 0.2f;// 当前暴击概率private float currentCritPercent;// 当前总攻击次数private int attackTotalCount = 0;// 当前总暴击过的次数private int critTotalCount = 0;// 连续未出现暴击的次数private int noCritStreakCount = 0;private void Start(){currentCritPercent = InitCritPercent;}private void Update(){// 监听鼠标左键输入if (Input.GetMouseButtonDown(0)){// 测试一次PerformAttack();Debug.Log("当前暴击率:" + currentCritPercent);}if (Input.GetKeyDown(KeyCode.Space)){// 测试一万次for (int i = 0; i < 10000; i++) PerformAttack();}}private void PerformAttack(){attackTotalCount++;bool isCritical = false;if (attackTotalCount > 0){// 计算当前暴击概率 = 总暴击数 / 总攻击数currentCritPercent = (float)critTotalCount / attackTotalCount;}// 检查是否需要强制暴击if (noCritStreakCount < 9){float percent = Random.Range(0f, 1f);if (percent < InitCritPercent){isCritical = true;noCritStreakCount = 0; // 重置计数器}else{noCritStreakCount++;}}else{isCritical = true;noCritStreakCount = 0; // 重置计数器}if (isCritical) critTotalCount++;// 执行攻击,如果 isCritical 为 true,则为暴击if (isCritical)Debug.Log("Critical Hit!");elseDebug.Log("Normal Hit.");}
}

将这个脚本挂到场景中的空物体上,运行游戏,然后按空格键先测试一万次,再点击鼠标左键显示当前的暴击率
用上述方式测试几次,会发现最终的暴击率大概在 22.5% 左右,打印结果如下图所示
在Unity中测试1请添加图片描述

那么这多出来的 2.5% 为什么会是 2.5% 呢,它具体是怎么来的呢,如何避免它产生呢?

带着这样的疑惑,笔者开始尝试进行分析…

排除误差的可能

首先我们要排除这 2.5% 是误差的可能。

假设暴击率为 0.2,不考虑其他的设定和限制,每次测试十万次、共测试三次。
那么正常情况下的输出结果如下图所示
排除误差1
请添加图片描述
误差在 0.2% 左右,这与 2.5% 差别还是很大的,所以基本排除这是误差导致的情况。

探索

为了进一步优化算法,笔者决定结合已有的数据和个人直觉进行改进。

笔者用Python重新编写了一版代码,这样我们不仅可以方便地输出图表进行可视化分析,还能在这个基础上进行后续的代码修改和优化。

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2   # 初始暴击率
attackTotalCount = 0    # 总攻击次数
critTotalCount = 0      # 总暴击次数
noCritStreakCount = 0   # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查是否连续 9 次未暴击if noCritStreakCount < 9:percent = random.random()if percent <= InitCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 添加数据到列表中currentCritPercentList.append(currentCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.5f}", (i, currentCritPercentList[i]))# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

从输出的图表中不难看出,整体的暴击率确实变高了,如下图所示

前 2000 次 如下
无动态概率调整1
8000 ~ 10000 次 如下
请添加图片描述

如要将最终的暴击概率调整回 0.2,那就应该降低“当前暴击概率”,将 B 条件所增加的那部分修正回来。

“递增修正”

将前文的python代码添加几个变量,用来检测当前暴击概率的变化,当前暴击概率高于初始暴击率的时候,就降低动态暴击率,直到将当前暴击率拉回到正常水平;反之亦然。

import matplotlib.pyplot as plt
import random# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
currentCritPercent = 0      # 当前暴击概率
deltaCritPercent = 0        # 当前暴击率与初始暴击率的差值(用来表示变化)
dynamicCritPercent = 0.2    # 动态暴击率
attackTotalCount = 0        # 总攻击次数
critTotalCount = 0          # 总暴击次数
noCritStreakCount = 0       # 连续未暴击次数# 给 plot 准备的列表
currentCritPercentList = []
deltaCritPercentList = []
dynamicCritPercentList = []
noCritStreakCountList = []
isCriticalList = []# 测试 10000 次
for i in range(10000):attackTotalCount += 1isCritical = False# 检查是否连续 9 次未暴击if attackTotalCount > 0:# 计算当前暴击概率currentCritPercent = critTotalCount / attackTotalCount# 计算当前暴击概率与初始暴击率的差值deltaCritPercent = abs(InitCritPercent - currentCritPercent)# 计算动态暴击率if(currentCritPercent > InitCritPercent):dynamicCritPercent -= deltaCritPercentif(currentCritPercent < InitCritPercent):dynamicCritPercent += deltaCritPercent# 检查是否连续 9 次未暴击if noCritStreakCount < 9:percent = random.random()if percent <= dynamicCritPercent:isCritical = TruenoCritStreakCount = 0else:noCritStreakCount += 1else:isCritical = TruenoCritStreakCount = 0if isCritical:critTotalCount += 1# 将数据添加到列表中currentCritPercentList.append(currentCritPercent)deltaCritPercentList.append(deltaCritPercent)dynamicCritPercentList.append(dynamicCritPercent)noCritStreakCountList.append(noCritStreakCount)isCriticalList.append(int(isCritical))# 创建多表格
fig, axs = plt.subplots(2)# 每 100 条数据标注一下
for i in range(0, len(currentCritPercentList), 100):axs[0].annotate(f"{currentCritPercentList[i]:.3f}", (i, currentCritPercentList[i]))# 画出暴击概率数据表格
axs[0].plot(currentCritPercentList, label='Current Crit Percent', color='r')
axs[0].plot(deltaCritPercentList, label='Delta Crit Percent', color='g')
axs[0].plot(dynamicCritPercentList, label='Dynamic Crit Percent', color='b')
axs[0].set_xlabel('Total Attacks')
axs[0].set_ylabel('Probability')
axs[0].legend()# 画出连续未暴击次数的表格
axs[1].plot(noCritStreakCountList, label='No-Crit Streak', color='m')
axs[1].plot(isCriticalList, label='Is Critical', color='c')
axs[1].set_xlabel('Total Attacks')
axs[1].set_ylabel('No-Crit Streak / Is Critical')
axs[1].legend()plt.show()

输出结果如下图所示
累计 目标0.2 次数10 无限制1
前 2000 次 如下
请添加图片描述

可以明显看出动态暴击率在大幅度地反复震荡,并且明显超出了 (0, 1) 的区间;
在震荡的高点时,会出现连续暴击的情况;在震荡的低点时,会出现连续地触发“保底”暴击;
这样虽然能将总体暴击概率稳定在 0.2 左右,但这显然不满足条件 C。

“递增修正”优化

显而易见,当动态暴击率超出 (0, 1) 区间时,就和 0、1 没有区别了
所以可以为它加个简单限幅,例如笔者将动态暴击率的幅度限制在(0.5倍初始暴击率,2倍初始暴击率)之间

# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码if attackTotalCount > 0:# 同上文代码# 计算动态暴击率if(currentCritPercent > InitCritPercent):dynamicCritPercent = min(max(dynamicCritPercent - deltaCritPercent, InitCritPercent * 0.5), InitCritPercent * 2)if(currentCritPercent < InitCritPercent):dynamicCritPercent = min(max(dynamicCritPercent + deltaCritPercent, InitCritPercent * 0.5), InitCritPercent * 2)# 检查是否连续 9 次未暴击if noCritStreakCount < 9:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
累计 目标0.2 次数10 限制0.5-2倍1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

现在的算法已经基本可用了,但还需要多尝试才能找到合适的限幅范围。
当限幅范围过大时,概率的分布会变得不均匀;
限幅范围过小时,又会出现无法逼近目标概率(初始暴击率),比较麻烦。

“递增修正”测试

将上述优化过的算法应用到其他情景中,例如掷硬币,每5次投掷至少有一次正面
初始概率(目标概率) = 0.5

# 同上文代码
InitCritPercent = 0.5
dynamicCritPercent = 0.5
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 4 次未掷出正面if noCritStreakCount < 4:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
累计 目标0.5 次数5 限制0.5-2倍1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

可以发现出现连续未正面的次数(连续未暴击次数),又在动态概率的波谷处出现“聚拢”现象,这很好理解:因为我们的限幅有些过大了。
总结下来,这种手动限定幅度的方式效率很低还容易出问题…

那么能不能让它根据自身目前状况,如目标概率、总攻击次数等参数,来动态调整 动态暴击率的增量呢?

“镜像修正”

基于以上思考,笔者希望每次攻击的“动态暴击率”是上次“当前暴击概率”关于“初始暴击率”的镜像,通过这种有针对性的“反向”操作,来将最终暴击率逼近目标值。
于是便有如下代码:

# 初始化变量
InitCritPercent = 0.2       # 初始暴击率
dynamicCritPercent = 0.2    # 动态暴击率
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码if attackTotalCount > 0:# 同上文代码# 计算动态暴击率dynamicCritPercent = attackTotalCount * InitCritPercent - (attackTotalCount - 1) * currentCritPercent# 检查是否连续 9 次未暴击if noCritStreakCount < 9:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 无限制 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

虽然能将最终的暴击概率稳定在 0.2,但结果过于平均了!
可以说这种“修正”的操作过于灵敏,导致暴击的分布非常均匀,甚至没有出现连续 9 次以上的未暴击。但这仍不是我们想要的,需要继续优化。

“镜像修正”优化

笔者发现,这种“过于均匀”的分布情况也是因为每次修正幅度过大导致的。
现在要调整这个幅度会比“递增修正”的方法容易很多,只需要让“计算动态暴击率”的结果乘以一个较小的系数即可。

这个系数需要与当前的状态有关,并且是一个越来越小的值。
而在攻击次数越来越多时,currentCritPercent 也会越来越逼近 InitCritPercent 的值,所以 deltaCritPercent 会随着攻击次数的增多越来越小;
(又因为 currentCritPercent 趋向于一个比 InitCritPercent 偏大的值,那么 deltaCritPercent 也会永不为 0)
这里我们就用 deltaCritPercent 来作为系数,目前来看刚好合适。

# 同上文代码# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * deltaCritPercent# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 倍率差值 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

由于对每次的 dynamicCritPercent 的幅度都做了差不多的限制,可以看到图二中,在前 1000 次左右攻击时,currentCritPercent 逼近目标值的速度很慢。
啧,还差一点…

继续优化!既然 deltaCritPercent 会随着攻击次数增多变得越来越小,那么我们不妨直接将它放大。

# 同上文代码# 计算动态暴击率dynamicCritPercent = (attackTotalCount * (InitCritPercent - currentCritPercent) + currentCritPercent) * pow(deltaCritPercent, 0.5)# 同上文代码

输出结果如下图所示
反向 目标0.2 次数10 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

以上结果已经基本符合预期。

“镜像修正”测试

掷硬币

下面还是用硬币的例子:掷硬币,每5次投掷至少有一次正面
初始概率(目标概率) = 0.5

# 同上文代码
InitCritPercent = 0.5
dynamicCritPercent = 0.5
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 4 次未掷出正面if noCritStreakCount < 4:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.5 次数5 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

也基本符合预期。

掷骰子

再以掷骰子为例:每掷出 15 次至少有一次是 点数 1。

# 同上文代码
InitCritPercent = 0.166667
dynamicCritPercent = 0.166667
# 同上文代码# 测试 10000 次
for i in range(10000):# 同上文代码# 检查是否连续 14 次未掷出正面if noCritStreakCount < 14:# 同上文代码# 同上文代码# 同上文代码

输出结果如下图所示
反向 目标0.166667 次数15 倍率差值开平方 无限制1
前 2000 次 如下
请添加图片描述
8000 ~ 10000 次 如下
请添加图片描述

稳定发挥。

优化

目前“镜像修正”算法已经基本可用了,但是虽然叫“镜像”,却已经没有了镜像当初的样子。

不如就直接改名叫“动态平衡概率”算法好了…

算法优化

细心的朋友应该会发现,这套算法在一开始的概率会低于目标概率一些,并且逼近的速度还是慢了些。后期稳定性也没有想象中的高。

笔者目前能想到的继续优化的方式有三种:

1.分段修改 deltaCritPercent 的开根,类似LOD模型替换的感觉;
2.用 log 函数做系数,然后当次数达到一定值时直接 * deltaCritPercent 就可以了;
3.按目标概率的比例,给“总攻击次数”和“总暴击次数”设置较大的初始值。这样不用给 deltaCritPercent 开平方,就能得到一个较为满意的结果,也会相对高效一些。

笔者还没来得及测试性能,如果后续有相关优化会修改本文章,或者发一篇新文章。

关于判断次数

我们感觉到的小概率事件发生的概率通常在 5% 或 1% 以下,通过这两个标准,我们可以很轻松地得出“目标概率为 X 时,操作 N 次至少出现一次目标事件”中的N:

def find_optimal_N(p):# 从 1 到 500for i in range(1, 501):if(1 - p) ** i <= 0.05:return iprint(find_optimal_N(0.2))
print(find_optimal_N(0.5))
print(find_optimal_N(0.166667))# 输出结果为:
# 14
# 5
# 17

所以当目标概率为 0.2、0.5、0.166667 时,N 比较合适的值为 14、5、17。
当目标概率小于 0.05 时,可以让if(1 - p) ** i <= 0.01:,或者更小。

结语

虽然本算法目前还有待优化,但已经足够应对一些游戏场景。
关于那多出的2.5%的问题,我会持续探索,直到找到满意的答案。

如果这篇文章能为你解决问题或带来新的启发,那我会感到非常荣幸!我始终相信,知识的传播能让我们共同进步。

对于已经在这个领域有丰富经验的大佬们,如果你们有任何建议或批评,我都非常欢迎。你们的反馈不仅能帮助我改进,也能让这篇文章更加完善,从而帮助到更多的人。

感谢你抽出宝贵的时间来阅读这篇文章,如果你觉得有用,也请不吝分享给更多需要的人。

再次感谢,期待与你们在知识的海洋里再次相遇!

这篇关于游戏中的随机——“动态平衡概率”算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/209949

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1