python爬取boss直聘职位数据,并保存到本地

2023-10-14 03:59

本文主要是介绍python爬取boss直聘职位数据,并保存到本地,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码环境

  1. python 3.7
  2. pip 19.0.3

主要引用的第三方库

  1. requests,用于模拟http/https请求
    • 安装: pip install requests
    • 文档: requests中文文档
  2. beautifulsoup4,用于解析网页,得出我们想要的内容。
    • 安装: pip install beautifulsoup4
    • 文档: bs4中文文档
  3. xlwt,将爬到的结果以Excel的形式保存到本地
    • 安装: pip install xlwt
    • api: xlwt api

打开网页

首先打开boss直聘官网,选择一个地点,然后输入关键字,点击搜索,这里以深圳、python为例。
在这里插入图片描述

观察地址栏URL,可以发现有四个参数,分别是query,city,industry和position,query和city很明显是我输入的python和选择的地点深圳;而industry和position也就是公司行业和职位类型,这里没有选择这两项。

分析网页

F12打开开发者工具
在这里插入图片描述
每一条职位信息都在一个<li>标签中,<li>标签下的<div class=“job-primary”>就是我们要找的内容。

代码

  • 获取城市编码

    url中的city=101280600,显示的是深圳,说明城市名有一个对应的编号,F12 点击Network选中XHR,有一个city.json
    在这里插入图片描述

import requests
from bs4 import BeautifulSoup
import json
import xlwt
import time
import randomuser_agent_list = ["Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; …) Gecko/20100101 Firefox/61.0","Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36","Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36","Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)","Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15"
]headers = {"user-agent": random.choice(user_agent_list)}# 获取指定城市的编码
def get_city_code(city_name):response = requests.get("https://www.zhipin.com/wapi/zpCommon/data/city.json")contents = json.loads(response.text)cities = contents["zpData"]["hotCityList"]city_code = contents["zpData"]["locationCity"]["code"]for city in cities:if city["name"] == city_name:city_code = city["code"]return city_codedef get_url(query="", city="", industry="", position="", page=1):base_url = "https://www.zhipin.com/job_detail/?query={}&city={}&industry={}&position={}&page={}"urls = []url = base_url.format(query, city, industry, position, page)response = requests.get(url, headers=headers)soup = BeautifulSoup(response.text, "lxml")page_list = soup.find("div", "page").find_all("a")urls.append(url)while page_list[len(page_list) - 1]["href"] != "javascript:;":page += 1url = base_url.format(query, city, industry, position, page)urls.append(url)response = requests.get(url, headers=headers)soup = BeautifulSoup(response.text, "lxml")page_list = soup.find("div", "page").find_all("a")return urlsdef get_html(url):response = requests.get(url, headers=headers)return response.textdef job_info(job_name, company, industry, finance, staff_number, salary, site, work_experience, education_bak, job_desc):return {"job_name": job_name,"company": company,"industry": industry,"finance": finance,"staff_number": staff_number,"salary": salary,"site": site,"work_experience": work_experience,"education_bak": education_bak,"job_desc": job_desc}def get_job_desc(jid, lid):url = "https://www.zhipin.com/wapi/zpgeek/view/job/card.json?jid={}&lid={}"response = requests.get(url.format(jid, lid), headers=headers)html = json.loads(response.text)["zpData"]["html"]soup = BeautifulSoup(html, "lxml")desc = soup.find("div", "detail-bottom-text").get_text()return descdef get_content(html):bs = BeautifulSoup(html, 'lxml')contents = []for info in bs.find_all("div", "job-primary"):job_name = info.find("div", "job-title").get_text()company = info.find("div", "company-text").a.get_text()jid = info.find("div", "info-primary").a["data-jid"]lid = info.find("div", "info-primary").a["data-lid"]desc = get_job_desc(jid, lid)texts = [text for text in info.find("div", "info-primary").p.stripped_strings]site = texts[0]work_exp = texts[1]edu_bak = texts[2]salary = info.span.get_text()companies = [text for text in info.find("div", "company-text").p.stripped_strings]industry = companies[0]if len(companies) > 2:finance = companies[1]staff_num = companies[2]else:finance = Nonestaff_num = companies[1]contents.append(job_info(job_name, company, industry, finance, staff_num, salary, site, work_exp, edu_bak, desc))time.sleep(1)return contentsdef save_data(content, city, query):file = xlwt.Workbook(encoding="utf-8", style_compression=0)sheet = file.add_sheet("job_info", cell_overwrite_ok=True)sheet.write(0, 0, "职位名称")sheet.write(0, 1, "公司名称")sheet.write(0, 2, "行业")sheet.write(0, 3, "融资情况")sheet.write(0, 4, "公司人数")sheet.write(0, 5, "薪资")sheet.write(0, 6, "工作地点")sheet.write(0, 7, "工作经验")sheet.write(0, 8, "学历要求")sheet.write(0, 9, "职位描述")for i in range(len(content)):sheet.write(i+1, 0, content[i]["job_name"])sheet.write(i+1, 1, content[i]["company"])sheet.write(i+1, 2, content[i]["industry"])sheet.write(i+1, 3, content[i]["finance"])sheet.write(i+1, 4, content[i]["staff_number"])sheet.write(i+1, 5, content[i]["salary"])sheet.write(i+1, 6, content[i]["site"])sheet.write(i+1, 7, content[i]["work_experience"])sheet.write(i+1, 8, content[i]["education_bak"])sheet.write(i+1, 9, content[i]["job_desc"])file.save(r'c:\projects\{}_{}.xls'.format(city, query))def main():city_name = "深圳"city = get_city_code(city_name)query = "python"urls = get_url(query=query, city=city)contents = []for url in urls:html = get_html(url)content = get_content(html)contents += contenttime.sleep(5)save_data(contents, city_name, query)if __name__ == '__main__':main()

这篇关于python爬取boss直聘职位数据,并保存到本地的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/207984

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核