pandas数据处理 + matplotlib可视化(电影票房分析)

2023-10-13 11:50

本文主要是介绍pandas数据处理 + matplotlib可视化(电影票房分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、首先导入包

# 导入库
import numpy as np
import matplotlib.pyplot as plt  # 绘图的库
import pandas as pd

2、读取文件

# 读取、打开文件
df = pd.read_csv(open('E:\电影票房.csv',encoding='ANSI'))
df.head(5)

我们的文件含有中文名,加上open( )好一点

查看数据如下
在这里插入图片描述

3、使用iloc( )切片数据

df = df.iloc[:,[3,5]]  # 切出行的全部、列的第3第5列
df.head(5)

这里顺便可以讲一下 iloc( ) 和 loc( ) 的区别,iloc 是使用索引取数据,loc 使用列名取数据;

上面的写法用 loc( ) 可以写成:

data.loc[:, ['类型', '全球票房']]  # 等同于data.iloc[:, [3, 5]]

在这里插入图片描述

4、分割、聚合数据

从第三题的 “类型” 列来看,有两种类型合在一起了(有的一种、有的两种),有两种的由 “竖杠” 分隔;我们要取出两种类型,形成两个列 “类型1” 和 “类型2” (也就是说这里的一个电影有两种类型)

首先定义一个函数,传入 item ,返回的内容是跟据斜杠分隔的 索引 为0的数据,这个是取第一个类型

def func1(item):return item.split('/')[0]

再定义一个函数,取第二个类型;有可能 “类型” 这一列只有一个类型,所以用 if 做个判断,如果有两个类型,就取索引为 1 的那个类型,没有第二个类型就用 0 替代 (后面要把 “类型2” 是 0 的行删除)

def func2(item):if '/' in item:return item.split('/')[1]else:return 0

接下来调用函数,就是让 “这个” 数据通过筛选

df['类型1'] = df['类型'].map(func1)
df['类型2'] = df['类型'].map(func2)

我们看到的数据后面的 .map( func1 )其实是进行匹配、换算,如果一个数据后面写 .map(float) 就是把这个数据类型转换成单精度类型

接着用 iloc( ) 继续取需要的数据

data_1 = df.iloc[:,[2,1]]
data_2 = df.iloc[:,[3,1]]
data_2 = df[data_2['类型2'] != 0]  # 剔除“类型2”中为0的项
data_2.head(5)

然后 data_2的数据就如下所示

在这里插入图片描述

5、去除 “全球票房” 后面的单位 “ $ ”

在第四题后面我们可以看到 “全球票房” 后面有个单位

这个有两种方法可以做

#  去除 ‘全球票房’ 后面的 ‘ $’data_2['全球票房'] = data_2['全球票房'].str[:-1]
data_2

在这里插入图片描述
这里的,str里取的 “-1” 和冒号的意思就是取 “从开头到最后一个(不包含最后一个)”
也可以使用 .replace( “原字符”, “新字符”) 这种方法替换,新字符的地方不用写,直接冒号得了

6、数据单位的转换

跟据第五题后面的图片可以看到,“全球票房” 的数值太大,我们可以把 “元” 变成 “亿元”,就是除以相应的数

# data_2['全球票房'] = data_2['全球票房'].astype('int64')def to_million(x):dollar = round(float(x)/100000000,4)return dollar
data_2['票房(亿元)'] = data_2['全球票房'].map(to_million)
data_2.head()

方法同样是自定义一个函数:
这里的 round( ) 就是用于保留多少位小数的, round(data, 2):就是保留两位小数,里面的float(x)就是强制转换 x 的数据类型为单精度类型, 4 就是保留 4 位小数

在这里插入图片描述
可以看见,换完单位我们的数值小很多,方便后面的可视化操作

7、跟据类型把票房分组求和

# 根据类型分组求和df_counts = data_2[['类型1','票房(亿元)']].groupby('类型1').sum()
df_counts

将数据里面的 “ 类型1 ” 和 “ 票房(亿元)”两个数据单独拿出来
再计算各个类型的总票房(求和),我们把类型单独拿出来分成 类型1 和 类型2 之后还有重复的(这里的重复指的是类型重复,我们要计算这个榜单各个类型的电影有多少票房),现在把他们加起来

在这里插入图片描述

8、数据可视化操作

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates

然后准备数据(同时,把数据转化为列表),可视化只要列表数据

y = df_counts.index.tolist()
x = df_counts['票房(亿元)'].tolist()
# 设置画布
fig, ax=plt.subplots(figsize=(8,8))
# 设置标题
plt.title("全球票房")
# 画图(圆形)
plt.pie(x = x,labels = y,autopct='%.0f%%')  # autopct='%.0f%%'是让饼图显示
# 设置图例
plt.legend(ncol=6,loc='upper right')  # loc 这里这个用于表示图例显示的位置# 让饼图变圆
plt.axis('equal')plt.show()

这篇关于pandas数据处理 + matplotlib可视化(电影票房分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/203021

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Python的pandas库基础知识超详细教程

《Python的pandas库基础知识超详细教程》Pandas是Python数据处理核心库,提供Series和DataFrame结构,支持CSV/Excel/SQL等数据源导入及清洗、合并、统计等功能... 目录一、配置环境二、序列和数据表2.1 初始化2.2  获取数值2.3 获取索引2.4 索引取内容2

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热