pandas数据处理 + matplotlib可视化(电影票房分析)

2023-10-13 11:50

本文主要是介绍pandas数据处理 + matplotlib可视化(电影票房分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、首先导入包

# 导入库
import numpy as np
import matplotlib.pyplot as plt  # 绘图的库
import pandas as pd

2、读取文件

# 读取、打开文件
df = pd.read_csv(open('E:\电影票房.csv',encoding='ANSI'))
df.head(5)

我们的文件含有中文名,加上open( )好一点

查看数据如下
在这里插入图片描述

3、使用iloc( )切片数据

df = df.iloc[:,[3,5]]  # 切出行的全部、列的第3第5列
df.head(5)

这里顺便可以讲一下 iloc( ) 和 loc( ) 的区别,iloc 是使用索引取数据,loc 使用列名取数据;

上面的写法用 loc( ) 可以写成:

data.loc[:, ['类型', '全球票房']]  # 等同于data.iloc[:, [3, 5]]

在这里插入图片描述

4、分割、聚合数据

从第三题的 “类型” 列来看,有两种类型合在一起了(有的一种、有的两种),有两种的由 “竖杠” 分隔;我们要取出两种类型,形成两个列 “类型1” 和 “类型2” (也就是说这里的一个电影有两种类型)

首先定义一个函数,传入 item ,返回的内容是跟据斜杠分隔的 索引 为0的数据,这个是取第一个类型

def func1(item):return item.split('/')[0]

再定义一个函数,取第二个类型;有可能 “类型” 这一列只有一个类型,所以用 if 做个判断,如果有两个类型,就取索引为 1 的那个类型,没有第二个类型就用 0 替代 (后面要把 “类型2” 是 0 的行删除)

def func2(item):if '/' in item:return item.split('/')[1]else:return 0

接下来调用函数,就是让 “这个” 数据通过筛选

df['类型1'] = df['类型'].map(func1)
df['类型2'] = df['类型'].map(func2)

我们看到的数据后面的 .map( func1 )其实是进行匹配、换算,如果一个数据后面写 .map(float) 就是把这个数据类型转换成单精度类型

接着用 iloc( ) 继续取需要的数据

data_1 = df.iloc[:,[2,1]]
data_2 = df.iloc[:,[3,1]]
data_2 = df[data_2['类型2'] != 0]  # 剔除“类型2”中为0的项
data_2.head(5)

然后 data_2的数据就如下所示

在这里插入图片描述

5、去除 “全球票房” 后面的单位 “ $ ”

在第四题后面我们可以看到 “全球票房” 后面有个单位

这个有两种方法可以做

#  去除 ‘全球票房’ 后面的 ‘ $’data_2['全球票房'] = data_2['全球票房'].str[:-1]
data_2

在这里插入图片描述
这里的,str里取的 “-1” 和冒号的意思就是取 “从开头到最后一个(不包含最后一个)”
也可以使用 .replace( “原字符”, “新字符”) 这种方法替换,新字符的地方不用写,直接冒号得了

6、数据单位的转换

跟据第五题后面的图片可以看到,“全球票房” 的数值太大,我们可以把 “元” 变成 “亿元”,就是除以相应的数

# data_2['全球票房'] = data_2['全球票房'].astype('int64')def to_million(x):dollar = round(float(x)/100000000,4)return dollar
data_2['票房(亿元)'] = data_2['全球票房'].map(to_million)
data_2.head()

方法同样是自定义一个函数:
这里的 round( ) 就是用于保留多少位小数的, round(data, 2):就是保留两位小数,里面的float(x)就是强制转换 x 的数据类型为单精度类型, 4 就是保留 4 位小数

在这里插入图片描述
可以看见,换完单位我们的数值小很多,方便后面的可视化操作

7、跟据类型把票房分组求和

# 根据类型分组求和df_counts = data_2[['类型1','票房(亿元)']].groupby('类型1').sum()
df_counts

将数据里面的 “ 类型1 ” 和 “ 票房(亿元)”两个数据单独拿出来
再计算各个类型的总票房(求和),我们把类型单独拿出来分成 类型1 和 类型2 之后还有重复的(这里的重复指的是类型重复,我们要计算这个榜单各个类型的电影有多少票房),现在把他们加起来

在这里插入图片描述

8、数据可视化操作

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates

然后准备数据(同时,把数据转化为列表),可视化只要列表数据

y = df_counts.index.tolist()
x = df_counts['票房(亿元)'].tolist()
# 设置画布
fig, ax=plt.subplots(figsize=(8,8))
# 设置标题
plt.title("全球票房")
# 画图(圆形)
plt.pie(x = x,labels = y,autopct='%.0f%%')  # autopct='%.0f%%'是让饼图显示
# 设置图例
plt.legend(ncol=6,loc='upper right')  # loc 这里这个用于表示图例显示的位置# 让饼图变圆
plt.axis('equal')plt.show()

这篇关于pandas数据处理 + matplotlib可视化(电影票房分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/203021

相关文章

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序