【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码

2023-10-13 07:10

本文主要是介绍【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于FCM(Fuzzy C-Means)糊聚类算法实现轴承故障诊断可以按照以下步骤进行:

  1. 数据收集:收集轴承工作时不同状态下的振动信号数据。这些数据应包括正常工作状态和各种故障状态的振动信号。

  2. 特征提取:从振动信号中提取有代性的特征参数。这些特征可以包括时域特征(差、峰峰值等)、频域特征(如频谱特征、统计特征等)以及其他与轴承故障相关的特征。

  3. 数据预处理:对提取的特征进行归一化或标准化处理,以消除不同特征之间的量纲差异,确保数据在相同的尺度范围内。

  4. 初始化聚类参数:设置初始聚类的数量和隶属度矩阵的初始值。在FCM算法中,需要指定聚类的个数以及隶属度的初始分布。

  5. 运用FCM算法:将处理过的特征数据输入到FCM算法中,迭代更新隶属度矩阵和聚类中心,直至满足停止准则(如隶属度变于某个阈值或达到最大迭代次数)。

6.隶属度矩阵,划分数据点到不同的聚类中心,将其归类为不同的轴承故障类型。

  1. 故障诊断与分析:对于新的未知样本,基于估的隶属度,可以诊断出其可能的故障类型。也可以分析各个故障类别所对应的特征模式,从而对不同故障状态进行辨识和分析。

需要注意的是,FCM算法属于一种启发式聚类算法,在实际应用中的效果还需结合实际数据和问题进行验证和调整。此外,应选择合适的聚类数量、隶属度更新规则和迭代停止准则。

⛄ 部分代码

clear allclcball=load ('ball.mat');              inner=load ('inner.mat');outer=load ('outer.mat') ;  outer1=load ('outer1.mat') ;normal=load('normal.mat');inner1=load('inner1.mat');ball1=load ('ball1.mat');ball_names = fieldnames(ball);       inner_names = fieldnames(inner);outer_names = fieldnames(outer);outer_names1 = fieldnames(outer1);normal_names = fieldnames(normal);inner_names1 = fieldnames(inner1);ball_names1 = fieldnames(ball1);ball_data=ball.(ball_names{1});      inner_data=inner.(inner_names{1});outer_data=outer.(outer_names{1});outer_data1=outer1.(outer_names1{1});normal_data=normal.(normal_names{1});inner_data1=inner1.(inner_names1{1});ball_data1=ball1.(ball_names1{1}); numPoint=4096;numExample=100;n=6;BearingFeature1=ExteactFeature(normal_data,numPoint,numExample,n);BearingFeature4=ExteactFeature(ball_data,numPoint,numExample,n);BearingFeature2=ExteactFeature(inner_data,numPoint,numExample,n);BearingFeature6=ExteactFeature(outer_data,numPoint,numExample,n);BearingFeature3=ExteactFeature(inner_data1,numPoint,numExample,n);BearingFeature5=ExteactFeature(ball_data1,numPoint,numExample,n);BearingFeature7=ExteactFeature(outer_data1,numPoint,numExample,n);K=[1,4,21,6,12,9,7,15,18,3,14,17,10,11,8,20,5,13,16,19,2];K_J=[1,4,21,6,12,3,9,15,18,7,14,17,10,11,8,5,20,2,13,16,19];fg=K(1:7);SelectFeature1=BearingFeature1(fg,:);SelectFeature2=BearingFeature2(fg,:);SelectFeature3=BearingFeature3(fg,:);SelectFeature4=BearingFeature4(fg,:);SelectFeature5=BearingFeature5(fg,:);SelectFeature6=BearingFeature6(fg,:);SelectFeature7=BearingFeature7(fg,:);input=[SelectFeature1,SelectFeature2,SelectFeature3,SelectFeature4,SelectFeature5,SelectFeature6,SelectFeature7]'; for i=1:700     input(i,:)=input(i,:)/max(input(i,:)); end[ iter,Obj_Fcn,CAT]=fuzzycm(input,14,2,1.0e-6)YLSF_ART_CAT=CAT;Sample1=1:100;YLSF_ART_CAT1=YLSF_ART_CAT(1:100);plot(Sample1,YLSF_ART_CAT1,'xy','markersize',10)hold onSample2=101:200;YLSF_ART_CAT2=YLSF_ART_CAT(101:200);plot(Sample2,YLSF_ART_CAT2,'pg','markersize',10)hold onSample3=201:300;YLSF_ART_CAT3=YLSF_ART_CAT(201:300);plot(Sample3,YLSF_ART_CAT3,'ob','markersize',14)Sample4=301:400;YLSF_ART_CAT4=YLSF_ART_CAT(301:400);plot(Sample4,YLSF_ART_CAT4,'vc','markersize',14)Sample5=401:500;YLSF_ART_CAT5=YLSF_ART_CAT(401:500);plot(Sample5,YLSF_ART_CAT5,'Dm','markersize',14)Sample6=501:600;YLSF_ART_CAT6=YLSF_ART_CAT(501:600);plot(Sample6,YLSF_ART_CAT6,'*r','markersize',14)Sample7=601:700;YLSF_ART_CAT7=YLSF_ART_CAT(601:700);plot(Sample7,YLSF_ART_CAT7,'hk','markersize',14)hold ond=15;k=d;for i=1:dplot([0,730],[i,i],':K')hold onendfor j=1:7    h=100*j;    plot([h,h],[0,k],':K')    hold onendaxis([0 700 0 k]);set(gca,'fontsize',20);set(gca,'xtick',0:100:700);set(gca,'ytick',0:1:k);title('FCM诊断结果','FontName','宋体','FontSize',18)xlabel('样本','FontName','宋体','FontSize',18)ylabel('种类','FontName','宋体','FontSize',18)% gtext('a','FontName','Times New Roman','FontSize',24)

⛄ 运行结果

⛄ 参考文献

[1] 张淑清,胡永涛,李盼,等.基于MEMD互近似熵及FCM聚类的轴承故障诊断方法[J].中国机械工程, 2015, 26(19):6.DOI:10.3969/j.issn.1004-132X.2015.19.010.

[2] 杨艺芳.SVM和FCM相结合的故障诊断方法的研究[D].西安科技大学,2008.DOI:10.7666/d.y1322455.

[3] 向玲,郭鹏飞,高楠,等.基于IITD和FCM聚类的滚动轴承故障诊断[J].航空动力学报, 2018, 33(10):8.DOI:10.13224/j.cnki.jasp.2018.10.029.

[4] 康乐.基于EEMD-SVD的FCM聚类的轴承故障诊断[D].燕山大学[2023-07-06].DOI:CNKI:CDMD:2.1016.764408.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇关于【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/201571

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali