【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码

2023-10-13 07:10

本文主要是介绍【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于FCM(Fuzzy C-Means)糊聚类算法实现轴承故障诊断可以按照以下步骤进行:

  1. 数据收集:收集轴承工作时不同状态下的振动信号数据。这些数据应包括正常工作状态和各种故障状态的振动信号。

  2. 特征提取:从振动信号中提取有代性的特征参数。这些特征可以包括时域特征(差、峰峰值等)、频域特征(如频谱特征、统计特征等)以及其他与轴承故障相关的特征。

  3. 数据预处理:对提取的特征进行归一化或标准化处理,以消除不同特征之间的量纲差异,确保数据在相同的尺度范围内。

  4. 初始化聚类参数:设置初始聚类的数量和隶属度矩阵的初始值。在FCM算法中,需要指定聚类的个数以及隶属度的初始分布。

  5. 运用FCM算法:将处理过的特征数据输入到FCM算法中,迭代更新隶属度矩阵和聚类中心,直至满足停止准则(如隶属度变于某个阈值或达到最大迭代次数)。

6.隶属度矩阵,划分数据点到不同的聚类中心,将其归类为不同的轴承故障类型。

  1. 故障诊断与分析:对于新的未知样本,基于估的隶属度,可以诊断出其可能的故障类型。也可以分析各个故障类别所对应的特征模式,从而对不同故障状态进行辨识和分析。

需要注意的是,FCM算法属于一种启发式聚类算法,在实际应用中的效果还需结合实际数据和问题进行验证和调整。此外,应选择合适的聚类数量、隶属度更新规则和迭代停止准则。

⛄ 部分代码

clear allclcball=load ('ball.mat');              inner=load ('inner.mat');outer=load ('outer.mat') ;  outer1=load ('outer1.mat') ;normal=load('normal.mat');inner1=load('inner1.mat');ball1=load ('ball1.mat');ball_names = fieldnames(ball);       inner_names = fieldnames(inner);outer_names = fieldnames(outer);outer_names1 = fieldnames(outer1);normal_names = fieldnames(normal);inner_names1 = fieldnames(inner1);ball_names1 = fieldnames(ball1);ball_data=ball.(ball_names{1});      inner_data=inner.(inner_names{1});outer_data=outer.(outer_names{1});outer_data1=outer1.(outer_names1{1});normal_data=normal.(normal_names{1});inner_data1=inner1.(inner_names1{1});ball_data1=ball1.(ball_names1{1}); numPoint=4096;numExample=100;n=6;BearingFeature1=ExteactFeature(normal_data,numPoint,numExample,n);BearingFeature4=ExteactFeature(ball_data,numPoint,numExample,n);BearingFeature2=ExteactFeature(inner_data,numPoint,numExample,n);BearingFeature6=ExteactFeature(outer_data,numPoint,numExample,n);BearingFeature3=ExteactFeature(inner_data1,numPoint,numExample,n);BearingFeature5=ExteactFeature(ball_data1,numPoint,numExample,n);BearingFeature7=ExteactFeature(outer_data1,numPoint,numExample,n);K=[1,4,21,6,12,9,7,15,18,3,14,17,10,11,8,20,5,13,16,19,2];K_J=[1,4,21,6,12,3,9,15,18,7,14,17,10,11,8,5,20,2,13,16,19];fg=K(1:7);SelectFeature1=BearingFeature1(fg,:);SelectFeature2=BearingFeature2(fg,:);SelectFeature3=BearingFeature3(fg,:);SelectFeature4=BearingFeature4(fg,:);SelectFeature5=BearingFeature5(fg,:);SelectFeature6=BearingFeature6(fg,:);SelectFeature7=BearingFeature7(fg,:);input=[SelectFeature1,SelectFeature2,SelectFeature3,SelectFeature4,SelectFeature5,SelectFeature6,SelectFeature7]'; for i=1:700     input(i,:)=input(i,:)/max(input(i,:)); end[ iter,Obj_Fcn,CAT]=fuzzycm(input,14,2,1.0e-6)YLSF_ART_CAT=CAT;Sample1=1:100;YLSF_ART_CAT1=YLSF_ART_CAT(1:100);plot(Sample1,YLSF_ART_CAT1,'xy','markersize',10)hold onSample2=101:200;YLSF_ART_CAT2=YLSF_ART_CAT(101:200);plot(Sample2,YLSF_ART_CAT2,'pg','markersize',10)hold onSample3=201:300;YLSF_ART_CAT3=YLSF_ART_CAT(201:300);plot(Sample3,YLSF_ART_CAT3,'ob','markersize',14)Sample4=301:400;YLSF_ART_CAT4=YLSF_ART_CAT(301:400);plot(Sample4,YLSF_ART_CAT4,'vc','markersize',14)Sample5=401:500;YLSF_ART_CAT5=YLSF_ART_CAT(401:500);plot(Sample5,YLSF_ART_CAT5,'Dm','markersize',14)Sample6=501:600;YLSF_ART_CAT6=YLSF_ART_CAT(501:600);plot(Sample6,YLSF_ART_CAT6,'*r','markersize',14)Sample7=601:700;YLSF_ART_CAT7=YLSF_ART_CAT(601:700);plot(Sample7,YLSF_ART_CAT7,'hk','markersize',14)hold ond=15;k=d;for i=1:dplot([0,730],[i,i],':K')hold onendfor j=1:7    h=100*j;    plot([h,h],[0,k],':K')    hold onendaxis([0 700 0 k]);set(gca,'fontsize',20);set(gca,'xtick',0:100:700);set(gca,'ytick',0:1:k);title('FCM诊断结果','FontName','宋体','FontSize',18)xlabel('样本','FontName','宋体','FontSize',18)ylabel('种类','FontName','宋体','FontSize',18)% gtext('a','FontName','Times New Roman','FontSize',24)

⛄ 运行结果

⛄ 参考文献

[1] 张淑清,胡永涛,李盼,等.基于MEMD互近似熵及FCM聚类的轴承故障诊断方法[J].中国机械工程, 2015, 26(19):6.DOI:10.3969/j.issn.1004-132X.2015.19.010.

[2] 杨艺芳.SVM和FCM相结合的故障诊断方法的研究[D].西安科技大学,2008.DOI:10.7666/d.y1322455.

[3] 向玲,郭鹏飞,高楠,等.基于IITD和FCM聚类的滚动轴承故障诊断[J].航空动力学报, 2018, 33(10):8.DOI:10.13224/j.cnki.jasp.2018.10.029.

[4] 康乐.基于EEMD-SVD的FCM聚类的轴承故障诊断[D].燕山大学[2023-07-06].DOI:CNKI:CDMD:2.1016.764408.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇关于【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/201571

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依