【预训练语言模型】SpanBERT: Improving Pre-training by Representing...

本文主要是介绍【预训练语言模型】SpanBERT: Improving Pre-training by Representing...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【预训练语言模型】SpanBERT: Improving Pre-training by Representing and Predicting Spans (2020ACL)

  陈丹琦团队的一篇改进BERT预训练任务的工作,扩展了BERT预训练语言模型:

  • 不像BERT只MASK单独的一个token,而是随机MASK掉连续的序列( contiguous random span);
  • 训练span boundary representation预测mask掉的整个区间内容;

1、动机:

  • 许多NLP任务涉及到包含多个span之间关系的推理,传统的BERT则无法处理这类问题;
  • 预测一个区间的多个token更加困难;

2、方法:

  • 不同于BERT,我们使用不同的随机策略mask掉一个span;
  • 添加辅助任务SPO,根据span boundary的两个token表征信息来预测span;
  • 随机采样一段文本,而不是两个,删掉了BERT中的Next Sentence Predicition任务

3、span masking

  给定一个文本序列X,从中挑选一些token组成Y集合,并迭代地进行采样。

  • 在每一次采样过程中,先基于几何分布采样span的长度(最短为1,最长为10,p=0.2),平均采样的区间长度约为3.8:
    在这里插入图片描述

  • 然后再基于均匀分布采样span的start位置。由于BERT采用的是word piece,因此需要保证采样的起始点必须是某个单词的起始点。

  • 传统的BERT模型中,对一个句子随机mask 15%的token,这些mask掉的token中,有80%被替换为[MASK],10%为随机替换一个token,10%保持不变。spanBERT中则是对span完成的,也就是说整个span的所有token都会满足“80%被替换为[MASK],10%为随机替换一个token,10%保持不变”的设置。

4、span boundary objective

  任务目标:根据span的前一个与后一个位置的token来预测span的所有token。假设Transformer的每个token输出记作 x 1 , . . . , x n \mathbf{x}_1, ..., \mathbf{x}_n x1,...,xn,给定一个mask span ( x s , . . . , x e ) (x_s, ..., x_e) (xs,...,xe),对mask span内的每一个token的表示,取决于 x s − 1 , x e + 1 \mathbf{x}_{s-1}, \mathbf{x}_{e+1} xs1xe+1、以及位置表征 P i − s + 1 \mathbf{P}_{i - s + 1} Pis+1(相对于 x s − 1 \mathbf{x}_{s-1} xs1的距离):
在这里插入图片描述

其中 f f f 函数为两层前馈网络,并添加Layer normalization:
在这里插入图片描述

最终获得的 y i \mathbf{y}_i yi 表示maxk span中的第 i i i 个[MASK] token,使用交叉熵损失函数作为目标函数,预测该[MASK]对应的词

5、single-sequence training

  作者认为添加next sentence prediction效果不好,因此摈弃这一个任务。

  关于对抽取式问答的下有任务,spanBERT依然在模型的输出部分,添加两个独立的分类器,并分别预测start和end的位置。

这篇关于【预训练语言模型】SpanBERT: Improving Pre-training by Representing...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199370

相关文章

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

Go 语言中的 Struct Tag 的用法详解

《Go语言中的StructTag的用法详解》在Go语言中,结构体字段标签(StructTag)是一种用于给字段添加元信息(metadata)的机制,常用于序列化(如JSON、XML)、ORM映... 目录一、结构体标签的基本语法二、json:"token"的具体含义三、常见的标签格式变体四、使用示例五、使用

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

如何合理管控Java语言的异常

《如何合理管控Java语言的异常》:本文主要介绍如何合理管控Java语言的异常问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、Thorwable类3、Error4、Exception类4.1、检查异常4.2、运行时异常5、处理方式5.1. 捕获异常