爬取1907条『课程学习』数据,分析哪类学习资源最受大学生青睐

本文主要是介绍爬取1907条『课程学习』数据,分析哪类学习资源最受大学生青睐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01前言

上一篇文章以『B站』为实战案例!手把手教你掌握爬虫必备框架『Scrapy』利用了scrapy爬取B站数据。本文将在此基础上完善代码,爬起更多的内容并保存到csv。

总共爬取1907条『课程学习』数据,分析哪类学习资源最火热最受大学生群体青睐。并通过可视化的方式将结果进行展示!

02数据获取

程序是接着以『B站』为实战案例!手把手教你掌握爬虫必备框架『Scrapy』进行完善,所以不清楚的可以先看一下这篇文章(详细讲述Scrapy入门,并以『B站』为案例进行实战编程)

1.各个scrapy文件

items文件

class BiliItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()#pass# 视频标题title = scrapy.Field()# 链接url = scrapy.Field()# 观看量watchnum = scrapy.Field()# 弹幕数dm = scrapy.Field()# 上传时间uptime = scrapy.Field()# 作者upname = scrapy.Field()

增加了四个字段(观看量、弹幕数、上传时间、作者)

lyc文件

class LycSpider(scrapy.Spider):name = 'lyc'allowed_domains = ['bilibili.com']start_urls = ['https://search.bilibili.com/all?keyword=大学课程&page=40']# 爬取的方法def parse(self, response):item = BiliItem()# 匹配for jobs_primary in response.xpath('//*[@id="all-list"]/div[1]/ul/li'):item['title'] = (jobs_primary.xpath('./a/@title').extract())[0]item['url'] = (jobs_primary.xpath('./a/@href').extract())[0]item['watchnum'] = (jobs_primary.xpath('./div/div[3]/span[1]/text()').extract())[0].replace("\n", "").replace(" ", "")item['dm'] = (jobs_primary.xpath('./div/div[3]/span[2]/text()').extract())[0].replace("\n", "").replace(" ", "")item['uptime'] = (jobs_primary.xpath('./div/div[3]/span[3]/text()').extract())[0].replace("\n", "").replace(" ", "")item['upname'] = (jobs_primary.xpath('./div/div[3]/span[4]/a/text()').extract())[0]# 不能使用returnyield item# 获取当前页的链接url = response.request.url#page +1new_link = url[0:-1]+str(int(url[-1])+1)# 再次发送请求获取下一页数据yield scrapy.Request(new_link, callback=self.parse)

为新增的四个字段进行网页标签解析

pipelines文件

import csvclass BiliPipeline:def __init__(self):#打开文件,指定方式为写,利用第3个参数把csv写数据时产生的空行消除self.f = open("lyc大学课程.csv", "a", newline="")# 设置文件第一行的字段名,注意要跟spider传过来的字典key名称相同self.fieldnames = ["title", "url","watchnum","dm","uptime","upname"]# 指定文件的写入方式为csv字典写入,参数1为指定具体文件,参数2为指定字段名self.writer = csv.DictWriter(self.f, fieldnames=self.fieldnames)# 写入第一行字段名,因为只要写入一次,所以文件放在__init__里面self.writer.writeheader()def process_item(self, item, spider):# print("title:", item['title'][0])# print("url:", item['url'][0])# print("watchnum:", item['watchnum'][0].replace("\n","").replace(" ",""))# print("dm:", item['dm'][0].replace("\n", "").replace(" ", ""))# print("uptime:", item['uptime'][0].replace("\n", "").replace(" ", ""))# print("upname:", item['upname'][0])print("title:", item['title'])print("url:", item['url'])print("watchnum:", item['watchnum'])print("dm:", item['dm'])print("uptime:", item['uptime'])print("upname:", item['upname'])# 写入spider传过来的具体数值self.writer.writerow(item)# 写入完返回return itemdef close(self, spider):self.f.close()

将爬取的内容保存到csv文件(lyc大学课程.csv)

2.启动scrapy

scrapy crawl lyc

通过上述命令可以启动scrapy项目

3.爬取结果

一共爬取1914条数据,最后经过简单清洗最终可用数据1907条!

03数据分析

1.大学生学习视频播放量排名

读取数据

dataset  = pd.read_csv('Bili\\lyc大学课程.csv',encoding="gbk")
title = dataset['title'].tolist()
url = dataset['url'].tolist()
watchnum = dataset['watchnum'].tolist()
dm = dataset['dm'].tolist()
uptime = dataset['uptime'].tolist()
upname = dataset['upname'].tolist()

数据处理

#分析1:  & 分析2
def getdata1_2():watchnum_dict = {}dm_dict = {}for i in range(0, len(watchnum)):if "万" in watchnum[i]:watchnum[i] = int(float(watchnum[i].replace("万", "")) * 10000)else:watchnum[i] = int(watchnum[i])if "万" in dm[i]:dm[i] = int(float(dm[i].replace("万", "")) * 10000)else:dm[i] = int(dm[i])watchnum_dict[title[i]] = watchnum[i]dm_dict[title[i]] = dm[i]###从小到大排序watchnum_dict = sorted(watchnum_dict.items(), key=lambda kv: (kv[1], kv[0]))dm_dict = sorted(dm_dict.items(), key=lambda kv: (kv[1], kv[0]))#分析1:大学生学习视频播放量排名"analysis1(watchnum_dict,"大学生学习视频播放量排名")

数据可视化

def pie(name,value,picname,tips):c = (Pie().add("",[list(z) for z in zip(name, value)],# 饼图的中心(圆心)坐标,数组的第一项是横坐标,第二项是纵坐标# 默认设置成百分比,设置成百分比时第一项是相对于容器宽度,第二项是相对于容器高度center=["35%", "50%"],).set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"])  # 设置颜色.set_global_opts(title_opts=opts.TitleOpts(title=""+str(tips)),legend_opts=opts.LegendOpts(type_="scroll", pos_left="70%", orient="vertical"),  # 调整图例位置).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")).render(str(picname)+".html"))

分析

  1. 【片片】《人间课堂》播放量最高,播放量:202万。

  2. 在B站从大学课程的内容学习吸引人远不上一些课堂内容有趣的话题。

2.大学生学习视频弹幕量排名

数据处理

watchnum_dict = {}
dm_dict = {}
for i in range(0, len(watchnum)):if "万" in watchnum[i]:watchnum[i] = int(float(watchnum[i].replace("万", "")) * 10000)else:watchnum[i] = int(watchnum[i])if "万" in dm[i]:dm[i] = int(float(dm[i].replace("万", "")) * 10000)else:dm[i] = int(dm[i])watchnum_dict[title[i]] = watchnum[i]dm_dict[title[i]] = dm[i]###从小到大排序
watchnum_dict = sorted(watchnum_dict.items(), key=lambda kv: (kv[1], kv[0]))dm_dict = sorted(dm_dict.items(), key=lambda kv: (kv[1], kv[0]))
#分析2:大学生学习视频弹幕量排名
analysis1(dm_dict,"大学生学习视频弹幕量排名")

数据可视化

###饼状图
def pie(name,value,picname,tips):c = (Pie().add("",[list(z) for z in zip(name, value)],# 饼图的中心(圆心)坐标,数组的第一项是横坐标,第二项是纵坐标# 默认设置成百分比,设置成百分比时第一项是相对于容器宽度,第二项是相对于容器高度center=["35%", "50%"],).set_colors(["blue", "green", "yellow", "red", "pink", "orange", "purple"])  # 设置颜色.set_global_opts(title_opts=opts.TitleOpts(title=""+str(tips)),legend_opts=opts.LegendOpts(type_="scroll", pos_left="70%", orient="vertical"),  # 调整图例位置).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}")).render(str(picname)+".html"))

分析

  1. 在弹幕数排行中《数据结构与算法基础》最高,弹幕数:33000

  2. 通过弹幕量的排行来看,可以看到大家都喜欢在什么样的课堂视频上留言

  3. 与播放量对比,大学生喜欢在课堂内容学习视频上进行发言!

3.up主大学生学习视频视频数

数据处理

#分析3: up主大学生学习视频视频数
def getdata3():upname_dict = {}for key in upname:upname_dict[key] = upname_dict.get(key, 0) + 1###从小到大排序upname_dict = sorted(upname_dict.items(), key=lambda kv: (kv[1], kv[0]))itemNames = []datas = []for i in range(len(upname_dict) - 1, len(upname_dict) - 21, -1):itemNames.append(upname_dict[i][0])datas.append(upname_dict[i][1])#绘图bars(itemNames,datas)

数据可视化

###柱形图
def bars(name,dict_values):# 链式调用c = (Bar(init_opts=opts.InitOpts(  # 初始配置项theme=ThemeType.MACARONS,animation_opts=opts.AnimationOpts(animation_delay=1000, animation_easing="cubicOut"  # 初始动画延迟和缓动效果))).add_xaxis(xaxis_data=name)  # x轴.add_yaxis(series_name="up主昵称", yaxis_data=dict_values)  # y轴.set_global_opts(title_opts=opts.TitleOpts(title='李运辰', subtitle='up视频数',  # 标题配置和调整位置title_textstyle_opts=opts.TextStyleOpts(font_family='SimHei', font_size=25, font_weight='bold', color='red',), pos_left="90%", pos_top="10",),xaxis_opts=opts.AxisOpts(name='up主昵称', axislabel_opts=opts.LabelOpts(rotate=45)),# 设置x名称和Label rotate解决标签名字过长使用yaxis_opts=opts.AxisOpts(name='大学生学习视频视频数'),).render("up主大学生学习视频视频数.html"))

分析

  1. 在大学课程视频的up主中,up主视频中与大学课堂有关的视频数排行

  2. 在大学课程视频数排行中,视频数最多的是:小白在学习呢

4.大学课程名称词云化

数据处理

text = "".join(title)
with open("stopword.txt","r", encoding='UTF-8') as f:stopword = f.readlines()
for i in stopword:print(i)i = str(i).replace("\r\n","").replace("\r","").replace("\n","")text = text.replace(i, "")

数据可视化

word_list = jieba.cut(text)
result = " ".join(word_list)  # 分词用 隔开
# 制作中文云词
icon_name = 'fab fa-qq'
"""
# icon_name='',#国旗
# icon_name='fas fa-dragon',#翼龙
icon_name='fas fa-dog',#狗
# icon_name='fas fa-cat',#猫
# icon_name='fas fa-dove',#鸽子
# icon_name='fab fa-qq',#qq
"""
gen_stylecloud(text=result, icon_name=icon_name, font_path='simsun.ttc', output_name="大学课程名称词云化.png")  # 必须加中文字体,否则格式错误

分析

  1. 北京大学清华大学的课程为主,课程标题含有着两个大学的居多。

  2. 这些视频标题中大多数以:基础公开课课件考研大学物理等关键词。

04总结

1.通过Scrapy框架爬取1907条『B站』大学课程学习资源数据。

2.对数据进行可视化展示以及凝练精简分析。

3.可能数据还有更多未分析或者挖掘的信息,欢迎在下方留言,提出你宝贵的建议

4.本文数据和代码在下方,欢迎自取!!!

如果大家对本文代码源码感兴趣,扫码关注『Python爬虫数据分析挖掘』后台回复:大学课程分析 ,获取完整代码和数据。

------------- 推荐文章 -------------

1·以『B站』为实战案例!手把手教你掌握爬虫必备框架『Scrapy』


2.python爬取各类基金数据,以『动图可视化』方式展示基金的涨跌情况


3.python爬取『大年初一』热映电影,以『可视化及词云秀』方式带你了解热映电影


4.爬虫遇到反爬机制怎么办? 看看我是如何解决的!

这篇关于爬取1907条『课程学习』数据,分析哪类学习资源最受大学生青睐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189798

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别