基于MATLAB的微分方程的解析解与欧拉算法的数值解(附完整代码)

2023-10-10 20:10

本文主要是介绍基于MATLAB的微分方程的解析解与欧拉算法的数值解(附完整代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一. 解析解方法

正常的求解微分方程的MATLAB格式如下:

y=dsolve(f1,f2,...,fm)

如果需要指明自变量,则如下:

y=dsolve(f1,f2,...,fm,'x')

格式中的fi既可以描述微分方程,又可以描述初始条件边界条件

  • 描述微分方程y^{(4)}(t)=7的MATLAB格式为:D4y=7
  • 描述条件y''(2)=3的MATLAB格式为:D2y(2)=3

例题1

输入信号u(t)如下:

u(t)=e^{-5t}cos(2t+1)+5

求解如下微分方程的通解

y^{(4)}(t)+10y'''(t)+35y''(t)+50y'(t)+24y(t)=5u''(t)+4u'(t)+2u(t)

y(0)=3,y'(0)=2,y''(0)=y'''(0)=0

解:

此题需要分两步解决。

第一步MATLAB代码如下:

clc;clear;
syms t;
u=exp(-5*t)*cos(2*t+1)+5;
uu=5*diff(u,t,2)+4*diff(u,t)+2*u %等式右边

运行结果:

uu =87*exp(-5*t)*cos(2*t + 1) + 92*exp(-5*t)*sin(2*t + 1) + 10

第二步MATLAB代码如下:

clc;clear;
syms t y;
y=dsolve(['D4y+10*D3y+35*D2y+50*Dy+24*y=87*exp(-5*t)*cos(2*t+1)+92*exp(-5*t)*sin(2*t+1)+10'],...
'y(0)=3','Dy(0)=2','D2y(0)=0','D3y(0)=0')

运行结果如下:
y =(exp(-5*t)*(37960*exp(2*t) - 53820*exp(3*t) + 29640*exp(4*t) + 650*exp(5*t) - 1029*cos(2*t + 1) - 1641*sin(2*t + 1) - 9750*exp(t) + 975*exp(2*t)*sin(1) - 6120*exp(3*t)*sin(1) + 2522*exp(4*t)*sin(1) - 14092*cos(1)*exp(t) + 4264*exp(t)*sin(1) + 34905*cos(1)*exp(2*t) - 26700*cos(1)*exp(3*t) + 6916*cos(1)*exp(4*t)))/1560

例题2

求解如下微分方程组

\begin{cases}x''(t)+2x'(t)=x(t)+2y(t)-e^{-t}\\y'(t)=4x(t)+3y(t)+4e^{-t} \end{}

解:

MATLAB代码如下:

clc;clear;
[x,y]=dsolve('D2x+2*Dx=x+2*y-exp(-t)','Dy=4*x+3*y+4*exp(-t)')

运行结果:

x =exp(t*(6^(1/2) + 1))*(6^(1/2)/5 - 1/5)*(C2 + exp(- 2*t - 6^(1/2)*t)*((11*6^(1/2))/3 - 37/4)) - exp(-t)*(C1 + 6*t) - exp(-t*(6^(1/2) - 1))*(6^(1/2)/5 + 1/5)*(C3 - exp(6^(1/2)*t - 2*t)*((11*6^(1/2))/3 + 37/4))
 
y = exp(-t)*(C1 + 6*t) + exp(t*(6^(1/2) + 1))*((2*6^(1/2))/5 + 8/5)*(C2 + exp(- 2*t - 6^(1/2)*t)*((11*6^(1/2))/3 - 37/4)) - exp(-t*(6^(1/2) - 1))*((2*6^(1/2))/5 - 8/5)*(C3 - exp(6^(1/2)*t - 2*t)*((11*6^(1/2))/3 + 37/4))

写成数学形式:

例题3

求解以下微分方程的解析解。

(1)x'(t)=x(t)(1-x^2(t))

(2)x'(t)=x(t)(1-x^2(t))+1

解:

MATLAB代码如下:

clc;clear;
syms t x X;%第一题
x=dsolve('Dx=x*(1-x^2)')%第二题
X=dsolve('DX=X*(1-X^2)+1')%实际上第二题没有解析解
%只有部分非线性方程有解析解

 第一题运行结果:

x =
 
                              0
                              1
                             -1
 (-1/(exp(C1 - 2*t) - 1))^(1/2)

第二题运行结果:

警告: Unable to find explicit solution. Returning implicit solution instead. 

X =
 root(z^3 - z - 1, z, 1)
 root(z^3 - z - 1, z, 2)
 root(z^3 - z - 1, z, 3)

二. 微分方程的算法分析

微分方程的通式如下:

\dot{x}(t)=f(t,x(t))

上式子中x^T(t)=[x_1(t),x_2(t),\cdots,x_n(t)]为状态向量,f^T(\cdot)=[f_1(\cdot),f_2(\cdot),\cdots,f_n(\cdot)]可以是任意非线性函数。

以下以Euler算法为例子,进行分析。

2.1 数学分析

t_0时刻系统状态向量表示为如下:

x(t_0)

微分方程左侧的导数可近似表示为如下:

(x(t_0+h)-x(t_0))/(t_0+h-t_0)

t_0+h时刻微分方程的近似解可表示为如下:

\hat x(t_0+h)=x(t_0)+hf(t_0,x(t_0))

t_0+h时刻系统的状态向量可表示为如下:

x(t_0+h)=\hat x(t_0+h)+R_0=x_0+hf(t,x_0)+R_0

t_k时刻系统的状态向量表示为如下:

x_k

所以,在t_k+h时Euler算法的数值解为如下:

\begin{cases}\dot{x}(t)=f(t,x(t))\\x_{k+1}=x_k+hf(t,x_k) \end{}

图像形式表示为如下:

理论上讲,h越小,微分效果越好。但是不能无限制地减小h的值,其中有两个原因:

  • 减慢计算速度
  • 增加累积误差

在对微分方程求解过程中,有以下三个技巧:

  • 选择适当的步长
  • 改进近似算法精度
  • 采用变步长方法

2.2代码分析

构建函数代码算法如下:


function [outx,outy]=MyEuler(fun,x0,xt,y0,PointNum)
%fun表示f(x,y) 
%x0,xt代表自变量的初值和终值
%y0:函数在x0处的值,也可以是向量的形式
%PointNum 代表自变量在[x0,xt]上取的点数if nargin<5|PointNum<=0PointNum=100; %PointNum默认值为100
end
if nargin<4y0=0; %y0默认值为0
endh=(xt-x0)/PointNum; %计算步长h
x=x0+[0:PointNum]'*h; %自变量数组
y(1,:)=y0(:)'; %将输出存为行向量,输出为列向量形式
for k=1:PointNumf=feval(fun,x(k),y(k,:));f=f(:)'; %计算f(x,y)在每个迭代点的值y(k+1,:)=y(k,:)+h*f; %对于所取的点x,迭代计算y值
end
outy=y;
outx=x;
plot(x,y)  %画出方程解的函数图

例题4

求以下微分方程组的h=0.2和h=0.4的数值解。

\begin{cases}y'=sinx+y\\ y(x_0)=1,x_0=0 \end{}

解:

此MATLAB文件分成三个部分:

(1)欧拉算法文件

function [outx,outy]=MyEuler(fun,x0,xt,y0,PointNum)
%fun表示f(x,y) 
%x0,xt代表自变量的初值和终值
%y0:函数在x0处的值,也可以是向量的形式
%PointNum 代表自变量在[x0,xt]上取的点数if nargin<5|PointNum<=0PointNum=100; %PointNum默认值为100
end
if nargin<4y0=0; %y0默认值为0
endh=(xt-x0)/PointNum; %计算步长h
x=x0+[0:PointNum]'*h; %自变量数组
y(1,:)=y0(:)'; %将输出存为行向量,输出为列向量形式
for k=1:PointNumf=feval(fun,x(k),y(k,:));f=f(:)'; %计算f(x,y)在每个迭代点的值y(k+1,:)=y(k,:)+h*f; %对于所取的点x,迭代计算y值
end
outy=y;
outx=x;
plot(x,y)  %画出方程解的函数图

文件命名:MyEuler.m

(2)函数文件

function f=myfun01(x,y)
f=sin(x)+y;

文件命名:myfun01.m

(3)主运行文件

clc;clear;
[x1,y1]=MyEuler('myfun01',0,2*pi,1,16); %欧拉法所得的解
h1=2*pi/16 %计算取16的步长[x11,y11]=MyEuler('myfun01',0,2*pi,1,32); %欧拉法所得的解
h2=2*pi/32 %计算取32点的步长y=dsolve('Dy=y+sin(t)','y(0)=1');
for k=1:33t(k)=x11(k);y2(k)=subs(y,t(k)); %求其对应点的离散解
end
plot(x1,y1,'+b',x11,y11,'og',x11,y2,'*r')
legend('h=0.4的欧拉法解','h=0.2的欧拉法解','符号解');

运行结果:

h1 =0.392699081698724
h2 =0.196349540849362

观察图像可以发现,此Euler方法和解析法相比,精准度还有一定的距离。于是提出以下改进版的欧拉方法

此时此题将有四个文件:
(1)原函数文件

function f=myfun01(x,y)
f=sin(x)+y;

(2)欧拉算法文件

function [outx,outy]=MyEuler(fun,x0,xt,y0,PointNum)
%fun表示f(x,y) 
%x0,xt代表自变量的初值和终值
%y0:函数在x0处的值,也可以是向量的形式
%PointNum 代表自变量在[x0,xt]上取的点数if nargin<5|PointNum<=0PointNum=100; %PointNum默认值为100
end
if nargin<4y0=0; %y0默认值为0
endh=(xt-x0)/PointNum; %计算步长h
x=x0+[0:PointNum]'*h; %自变量数组
y(1,:)=y0(:)'; %将输出存为行向量,输出为列向量形式
for k=1:PointNumf=feval(fun,x(k),y(k,:));f=f(:)'; %计算f(x,y)在每个迭代点的值y(k+1,:)=y(k,:)+h*f; %对于所取的点x,迭代计算y值
end
outy=y;
outx=x;
plot(x,y)  %画出方程解的函数图

(3)改进版欧拉算法文件

function [Xout,Yout]=MyEulerPro(fun,x0,xt,y0,PointNumber) 
%用改进的欧拉法解微分方程if nargin<5|PointNumber<=0 %PointNumber默认值为100PointNumber=100;
end
if nargin<4  %y0默认值为0y0=0;
endh=(xt-x0)/PointNumber; %计算所取的两离散点之间的距离
x=x0+[0:PointNumber]'*h; %表示出离散的自变量x
y(1,:)=y0(:)';
for i=1:PointNumber %迭代计算过程f1=h*feval(fun,x(i),y(i,:));f1=f1(:)';f2=h*feval(fun,x(i+1),y(i,:)+f1);f2=f2(:)';y(i+1,:)=y(i,:)+1/2*(f1+f2);
end
Xout=x;
Yout=y;

 (4)主运行文件

clc;clear;%此处对比改进版欧拉法,简单欧拉法以及微分方程的符号解
[x3,y3]=MyEulerPro('myfun01',0,2*pi,1,128); [x,y1]=MyEuler('myfun01',0,2*pi,1,128);%欧拉法所得的解y=dsolve('Dy=y+sin(t)','y(0)=1'); %该微分方程的符号解
for k=1:129 %点数t(k)=x(k); %代入y2(k)=subs(y,t(k)); %求其对应点的离散解,也就是计算y
end
plot(x,y1,'-b',x3,y3,'og',x,y2,'*r')
legend('简单欧拉法解','改进欧拉法解','符号解');

运行结果:

 

这篇关于基于MATLAB的微分方程的解析解与欧拉算法的数值解(附完整代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182797

相关文章

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499