Roofline模型(一):概念、基本公式、图像分析

2023-10-10 11:30

本文主要是介绍Roofline模型(一):概念、基本公式、图像分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • Roofline模型
    • 引入:什么是较好的性能评价模型?
    • 什么是roofline模型?
    • 怎样使用roofline模型分析性能?
      • (DRAM) roofline model简化模型
      • (DRAM) roofline model基本公式
      • (DRAM) roofline model图像
      • 使用roofline模型分析性能示例
      • 有哪些低于roofline的原因?

Roofline模型

参考文献:

Samuel Williams, Roofline Performance Modeling for HPC and Deep Learning Applications, https://crd.lbl.gov/assets/Uploads/S21565-Roofline-1-Intro.pdf

YouTube English Presentation:Roofline Hackathon 2020 part 1 and 2 - YouTube

引入:什么是较好的性能评价模型?

image-20230113122833220

  • 1、假设在GPU上对内核的循环测试进行性能分析,我们对不同的loop nest得到了随机的flop rates,有的很高,有的很低,这意味着只用GFLOP/s去评价性能可能有失偏颇

在这里插入图片描述

  • 2、假设我们把某CPU代码移植到了Nvida GPU或者是AMD GPU中,将原CPU代码作为baseline(绿色),去对比移植后的代码性能(灰色)提升了多少,然后发现在有的循环中提升了非常多(例如第三根柱子、最后一根柱子),有的循环中只提升了一点点(例如第6根柱子),也不能很好的评价性能。

    那么什么是“好的”性能?(GPU为例)

    两个基本评价标准:

    1、能够在吞吐量有限的情况下运行

    ​ not sensitive to Amdahl effects, D2H/H2D transfers, launch overheads, etc…

    ​ 对于阿达姆效应不敏感、不会有连续的性能瓶颈;没有频繁的主机(Host)与设备内存(Device)之间的数据交换,保持尽量少的数据交换,使时间尽可能花在GPU计算上;启动开销尽量小,避免启动一堆很小的kernel(例如一个kernel只计算几微秒),把时间浪费在launch kernel上

    2、充分利用GPU的计算以及访存带宽能力

    总之,我们需要一个定量的性能评价模型,而不是定性的类似“性能不错”这样的评价。例如,达到了GPU计算峰值的80%、利用了70%的访存带宽等。

什么是roofline模型?

  • roofline模型是一个面向吞吐量的性能模型
  • 关注“率(rates)”而不是时间(time),例如flop rate(GFLOP/s)、bytes per second rate(GB/s)
  • 与架构无关,可以应用于CPU、GPU、DCU、Google TPU、FPGA等等

怎样使用roofline模型分析性能?

(DRAM) roofline model简化模型

首先我们对代码运行的计算机架构进行简单建模:

image-20230113094623117

首先假设当数据位于Cache中时(local data),SM通常可以达到计算能力峰值(此处举例为GFLOP/s)。然假设在某数据并行程序中,所有的SMs运行时都是负载均衡的,将它们合并,进行进一步简化:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-u8V4Qwj4-1673586721407)(C:\Users\dly2211480\AppData\Roaming\Typora\typora-user-images\image-20230113094915163.png)]

最后假设有足够的Cache空间以及访存带宽,即性能不会因为Cache空间不足以及访存带宽不够而被影响,基于此将模型再次简化:

image-20230113095039891

对于简化后的模型来说,能够影响性能的只有我们写的代码能算多快以及在主机端和设备端之间传输数据的速度有多快。我们将上面的模型叫做DRAM roofline model。

(DRAM) roofline model基本公式

假设数据传输时间和运算时间可以完美重叠,那么我们的代码耗时应为:
Time  = max ⁡ { #FP ops  / Peak GFLOP/s  #Bytes  / Peak GB/s  \text { Time }=\max \left\{\begin{array}{l} \text { \#FP ops } / \text { Peak GFLOP/s } \\ \text { \#Bytes } / \text { Peak GB/s } \end{array}\right.  Time =max{ #FP ops / Peak GFLOP/s  #Bytes / Peak GB/s 
#FP ops  / Peak GFLOP/s  \text { \#FP ops } / \text { Peak GFLOP/s }  #FP ops / Peak GFLOP/s 是理论计算时间,即浮点操作数量除以峰值计算速度, #Bytes  / Peak GB/s  \text { \#Bytes } / \text { Peak GB/s }  #Bytes / Peak GB/s 是理论访存时间,即需要从DRAM中存入以及读取的数据总量的Bytes除以DRAM峰值带宽。

前面提到roofline模型主要关注“率”,因此对上面公式进行变形,得到:
#FP ops  Time  = min ⁡ { Peak GFLOP/s  (#FP ops  / #Bytes)  ∗ Peak GB/s  \frac{\text { \#FP ops }}{\text { Time }}=\min \left\{\begin{array}{l} \text { Peak GFLOP/s } \\ \text { (\#FP ops } / \text { \#Bytes) } * \text { Peak GB/s } \end{array}\right.  Time  #FP ops =min{ Peak GFLOP/s  (#FP ops / #Bytes)  Peak GB/s 
即:
GFLOP/s  = min ⁡ { Peak GFLOP/s  A I ∗ Peak GB/s  \text { GFLOP/s }=\min \left\{\begin{array}{l} \text { Peak GFLOP/s } \\ A I^* \text { Peak GB/s } \end{array}\right.  GFLOP/s =min{ Peak GFLOP/s AI Peak GB/s 
上面的公式就是roofline模型的基本公式,其中AI(Arithmetic Intensity)=FLOPs/Bytes=计算量/访存量,表示计算密度。当代码的计算量远大于访存量,我们说他是计算密集型的,当访存量远大于计算量,则说他是访存密集型的。

(DRAM) roofline model图像

image-20230113113314290

根据 GFLOP/s  = min ⁡ { Peak GFLOP/s  A I ∗ Peak GB/s  \text { GFLOP/s }=\min \left\{\begin{array}{l} \text { Peak GFLOP/s } \\ A I^* \text { Peak GB/s } \end{array}\right.  GFLOP/s =min{ Peak GFLOP/s AI Peak GB/s ,以AI(计算密度)为横坐标,FLOP/s(可达到的浮点性能)为纵坐标,可得出roofline模型图像(因图像长得像屋顶所以叫roofline模型)。蓝色段中,性能受限于理论带宽(即斜率,Peak GB/s),在粉色段中,性能受限于浮点计算峰值性能(Peak GFLOP/s)。图中的转折点的横坐标 称作“Machine Balance”,其表征了硬件架构的特点,而Arithmetic Intensity(计算密度)表征了我们的代码/应用的特点。

image-20230113115515087

我们大致可以把图像分为5个区域,粉色线以上和蓝色线以左的区域是程序无论如何都无法达到的性能,因为它意味着超过了计算机的峰值计算性能/访存带宽。淡蓝色区域(计算密度小于Machine Balance点)是性能较好的访存密集型程序,这部分程序的访存带宽利用率较高(可能50%或更高),评价访存密集型程序的指标主要选用访存带宽;淡粉色区域(计算密度大于Machine Balance点)是性能较好的计算密集型程序,有较好的数据重用率与数据局部性,这部分程序的浮点性能较高(可能50%或更高),评价计算密集型程序的指标主要选用浮点性能。最后就是可能带宽与浮点性能都低于50%峰值性能的poor performance,如果程序性能处于这个部分,需要考虑优化算法提高性能,达到粉色或者蓝色区域。

使用roofline模型分析性能示例

对于文章一开始的性能分析图(随机输出kernel性能),我们将其重新组织,计算每个kernel的计算密度,并以计算密度为横坐标,重新排列得到:

image-20230113123103143

将其与roofline模型相比较:

image-20230113123120725

那些贴近于roofline的kernel较好的利用了计算资源(绿色点点),而那些远离roofline的kernel(红色点点)则是我们重点需要去优化、提高计算资源利用率的。这里需要注意,对比FLOP/s很低的kernel(例如第一个绿点),红点虽然看起来FLOP/s更高,但是比绿点更有优化性价比。因为绿点已经很接近roofline模型了,无法突破机器能提供的最大资源,可能需要费很大的劲儿才能提高一点点(如果不改变计算密度的话);而红点离roofline还有较远距离,可通过不断优化访存函数、计算函数来提高访存带宽/浮点计算性能利用率。除此之外,如果想要提高FLOP/s很低但是又比较接近roofline的kernel,可以通过改进计算方法/减少数据传输时间来提高计算密度(例如提高空间局部性、提高cache命中率、改进数据结构、数据类型)。

在这里插入图片描述

有哪些低于roofline的原因?

见下篇:Roofline模型(二):有哪些性能低于roofline的原因?

这篇关于Roofline模型(一):概念、基本公式、图像分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180142

相关文章

mapstruct中的@Mapper注解的基本用法

《mapstruct中的@Mapper注解的基本用法》在MapStruct中,@Mapper注解是核心注解之一,用于标记一个接口或抽象类为MapStruct的映射器(Mapper),本文给大家介绍ma... 目录1. 基本用法2. 常用属性3. 高级用法4. 注意事项5. 总结6. 编译异常处理在MapSt

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

git stash命令基本用法详解

《gitstash命令基本用法详解》gitstash是Git中一个非常有用的命令,它可以临时保存当前工作区的修改,让你可以切换到其他分支或者处理其他任务,而不需要提交这些还未完成的修改,这篇文章主要... 目录一、基本用法1. 保存当前修改(包括暂存区和工作区的内容)2. 查看保存了哪些 stash3. 恢

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可