『初阶数据结构 • C语言』③ - 算法分析专业工具——大O记法

2023-10-10 04:50

本文主要是介绍『初阶数据结构 • C语言』③ - 算法分析专业工具——大O记法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文内容借鉴一本我非常喜欢的书——《数据结构与算法图解》。学习之余,我决定把这本书精彩的部分摘录出来与大家分享。  


 

 

写在前面

从之前的章节中我们了解到,影响算法性能的主要因素是其所需的步数。

然而,我们不能简单地把一个算法记为“22步算法”,把另一个算法记为“400步算法”,因为一个算法的步数并不是固定的。

以线性查找为例,它的步数等于数组的元素数量。如果数组有22个元素,线性查找就需要 22步;如果数组有 400个元素,线性查找就需要 400步。

量化线性查找效率的更准确的方式应该是:对于具有 N 个元素的数组,线性查找最多需要 N步

为了方便表达数据结构和算法的时间复杂度,计算机科学家从数学界借鉴了一种简洁又通用的方式,那就是大 O 记法。

掌握了大 O记法,就掌握了算法分析的专业工具。


1.大O:数步数

为了统一描述,大 O不关注算法所用的时间,只关注其所用的步数。

第 1章介绍过,数组不论多大,读取都只需 1步。用大 O记法来表示,就是:O(1)

O(1)意味着一种算法无论面对多大的数据量,其步数总是相同的。

就像无论数组有多大,读取元素都只要 1 步。这 1 步在旧机器上也许要花 20 分钟,而用现代的硬件却只要 1 纳秒。但这两种情况下,读取数组都是 1步。其他也属于 O(1)的操作还包括数组末尾的插入与删除。之前已证明,无论数组有多大,这两种操作都只需 1步,所以它们的效率都是O(1)。

下面研究一下大 O 记法如何描述线性查找的效率。回想一下,线性查找在数组上要逐个检查每个格子。在最坏情况下,线性查找所需的步数等于格子数。即如前所述:对于 N个元素的数组,线性查找需要花 N步。

用大 O记法来表示,即为:O(N)


2.常数时间与线性时间

从 O(N)可以看出,大 O 记法不只是用固定的数字(如 22、440)来表示算法的步数,而是基于要处理的数据量来描述算法所需的步数。

或者说,大 O 解答的是这样的问题:当数据增长时,步数如何变化

O(N)算法所需的步数等于数据量,意思是当数组增加一个元素时,O(N)算法就要增加 1步。而 O(1)算法无论面对多大的数组,其步数都不变

当数据增加一个单位时,算法也随之增加一步。也就是说,数据越多,算法所需的步数就越多。O(N)也被称为线性时间

相比之下,O(1)则为一条水平线,因为不管数据量是多少,算法的步数都恒定。所以,O(1)也被称为为常数时间

因为大 O主要关注的是数据量变动时算法的性能变化,所以,即使一个算法的恒定步数不是 1,它也可以被归类为 O(1)。

O(1)永远比O(N)更高效,原因在于,当元素数量无限增多时,O(N)总会在某一临界值超过O(1)


3.同一算法,不同场景

之前的章节我们提到,线性查找并不总是 O(N)的。当要找的元素在数组末尾,那确实是 O(N)。但如果它在数组开头,1步就能找到的话,那么技术上来说应该是 O(1)。所以概括来说,线性查找的最好情况是 O(1),最坏情况是 O(N)。

虽然大 O 可以用来表示给定算法的最好和最坏的情景,但若无特别说明,大 O 记法一般都是指最坏情况

这种悲观主义其实是很有用的:知道各种算法会差到什么程度,能使我们做好最坏打算,以选出最适合的算法。


4.第三种算法

上一章我们学到:在同一个有序数组里,二分查找比线性查找要快。

算法为何重要(二分查找)http://t.csdn.cn/YPs4s下面就来看看如何用大O记法描述二分查找。

二分查找的大 O记法是:O(log N)

简单分析一下,倘若要用二分查找在含有N个元素的有序数组中查找某个元素。

二分查找的基本思想是,每次我们都能排除掉一半的数据。

所以考虑最坏情况,就是数组里没有我们要查找的元素,那么我们每次排除一半的元素,多

少次才能全部排除(或者说只剩一个元素)呢?

答案是  log_{2} N

简单来说,O(log N)意味着该算法当数据量翻倍时,步数加 1

这里我们所提过的 3种时间复杂度,按照效率由高到低来排序的话,会是这样:

O(1)<O(log N)<O(N)

现在回到大 O记法。当我们说 O(log N)时,其实指的是 O(log 2 N),不过为了方便就省略了2而已。简单来说,O(log N)算法的步数等于二分数据直至元素剩余 1 个的次数。

下表是 O(N)和 O(log N)的效率对比。

每次数据量翻倍时,O(N)算法的步数也跟着翻倍,O(log N)算法却只需加 1。

总结

学会大 O记法,我们在比较算法时就有了一致的参考系。有了它,我们就可以在现实场景中测量各种数据结构和算法,写出更快的代码,更轻松地应对高负荷的环境。 

下一章会用一个实际的例子,让你看到大 O记法如何帮助我们显著地提高代码的性能。

 

这篇关于『初阶数据结构 • C语言』③ - 算法分析专业工具——大O记法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/178086

相关文章

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三