医学图像配准 (Medical Image Registration)

2023-10-09 07:40

本文主要是介绍医学图像配准 (Medical Image Registration),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

Classification

Transformation

 Registration Algorithms

Landmark Based

Surfaced Based

Voxel Intensity Based

Information Theory Based

Registration using basis functions

Registration using splines

Other Physics Based Registration

Optimization

Visualization

Validation


Classification

1. Dimensionality

2D-2D, 3D-3D, 2D-3D

2. Nature of registration basis

-Image based

        Extrinsic, Intrinsic

-Non-image based

3. Nature of the transformation

-Rigid, Affine, Projective, Curved

4. Interactive

-Interactive, Semi-automatic, Automatic

5. Modalities involved

-Monomodal, Multimodal, Modality to model (the third one can be involved in the first two categories)

6. Subject

-Intra-subject, Inter-subject, Atlas (the third one can be involved in the inter-subject)

7. Domain of transformation

-Local, Global

8. Optimization procedure

9. Object

Transformation

Relate the position of features in two images

-Rigid (Rigid-body)

        Translations and rotations

-Affine

        Also allows scaling and shearing

-Curved

        Allows the mapping of straight lines to curves 

- Perspective

        The parallelism of lines need not be preserved

(Curved and perspective can be summarized as Non-linear)

 Registration Algorithms

Methods used to find the transformation

1. Rigid & affine

-Landmark based (feature point)

-Information theory based

-Edge based

-Voxel intensity based

2. Non-rigid

-Registration using basis functions

-Registration using splines

-Physics based

-Elastic, Fluid, Optical flow, etc.

Landmark Based

Identifying corresponding points in the images and inferring the image transformation.

1. Types of landmarks

-Intrinsic

        internal anatomical structure

-Extrinsic

        artificial objects attached to the patients

2. Compute the average or centroid of each set of points -> translation

3. Rotate this point set about the new centroid until the sum of the squared distances between each corresponding point pair is minimized.

Surfaced Based

1. Method

-Extract corresponding surfaces

-Compute the transformation by minimizing some measure of distance between the two surfaces

2. Algorithms used

-The "Head and Hat" Algorithm

-The Iterative Closest Point Algorithm

-Registration using crest lines

Voxel Intensity Based

1. Method

-Calculating the registration transformation by optimizing some measures calculated directly from the voxel values in the images

2. Algorithms used

-Registration by minimizing intensity difference

-Correlation techniques

-Ratio image uniformity

-Partitioned intensity uniformity

Information Theory Based

1. Maximize the amount of shared information in two images

-Reduce the amount of information in the combined image

2. Algorithms used

-Joint entropy

        Joint entropy measures the amount of information in the two images combined (min)

-Mutual information

        A measure of how well one image explains the other, and is maximized at the optimal alignment (max)

-Normalized mutual information

Registration using basis functions

1. Represent the deformation field using a set of basis functions

-Fourier (trigonometric) basis functions or wavelet basis functions

-Implement smoothness constraint by a linear combination of basis functions

-The trigonometric basis functions correspond to a spectral representation of the deformation field where each basis function describes a particular frequency of the deformation

Registration using splines

1. Assumption

-A set of corresponding points or landmarks (control points) can be identified

2. At control points, interpolate or approximate the displacements to map the location of the control points in both images

3. Between control points, they provide a smoothly varying displacement field

Elastic Registration

1. Model the deformation as a physical process resembling the stretching of an elastic material

-The physical process is governed by the internal force & external force

-Described by the Navier linear elastic partial differential equation

2. The external force drives the registration process

-The external force can be the gradient of a similarity measure

        e.g. local correlation measure based on intensities, intensity differences, or intensity features such as edge and curvature.

-Or the distance between the curves and surfaces of corresponding anatomical structures

Other Physics Based Registration

1. Fluid registration

-The image was modeled as a highly viscous fluid

2. Registration using mechanical models

-Use a three-component model to simulate the properties of rigid, elastic, and fluid structures

3. Registration using optical flow

Optimization

Many registration algorithms require an iterative approach

-An initial estimate of the transformation is gradually refined

-In each iteration, the current estimate of the transformation is used to calculate a similarity measure

-Make another estimate of the transformation, evaluate the similarity measure again, and continue until the algorithm converges

-No transformation can be found that results in a better value of the similarity measure, to within a preset tolerance

Visualization

1. Color overlay

2. Interleaved pixel or chessboard fusion

3. Dynamic alternating display

4. Split view displays

5. Subtraction images

6. Etc.

Validation

1. Measurements using computer-generated models, images of physical phantoms of accurately known construction and dimensions, and images of patients or volunteers.

-Robustness

-Accuracy

2. Assessment of accuracy

-Estimate of some geometrical measure of alignment error

-Compare the system to be validated against a gold standard

-Visual assessment

这篇关于医学图像配准 (Medical Image Registration)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171341

相关文章

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境