卷积平滑数据原理(有边缘效应)

2023-10-09 03:30

本文主要是介绍卷积平滑数据原理(有边缘效应),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、离散卷积的求法
假设两组数据
A(原始数据):[a b c d], B(平滑窗口)[1/2 1/3]
则A卷积B等于
(1) A*1/2 = a/2 b/2 c/2 d/2 (空) 不移位
(2) A*1/3 = (空) a/3 b/3 c/3 d/3 向右移一位
(3) (1) + (2) = a/2 b/2+a/3 c/2+b/3 d/2+c/3 d/3
二、卷积平滑数据
基于一的离散卷积求解过程,则卷积可以利用与平滑数据。
1、假设t的取值范围为-4~4平均分成100份,y = sin(t) + randn(100), randn(100)为100个标准正太分布中的随机取值(randn(100)为一个向量),则利用卷积来平滑数据的结果,其中平滑窗口为[1/10…..1/10] (10个1/10组成的向量):这里写图片描述
如图所示,原始数据为黑点,平滑数据为红色+号,在边缘部分数据变化趋势不准确,这是由于这里面使用的 python语句为:

convolution(y,window,'same') 
'''结果为数据集中间长度为Max(y,window)的结果,因此会有边缘效应'''

解释:由于平滑窗口为[1/10 1/10 1/10…..1/10],则基于一种离散卷积求解过程可得,其平滑结果为取本点与前面9个点之和的平均值。也就相当与每个点的增幅都被缩小了,因此可以用来平滑数据。居于此可得,当平滑窗口向量值越少时,数据越不平滑(每个点的增幅值被考虑的权重增大),如下例所示,平滑窗口为[1/2 1/2]:

这里写图片描述
解释:平滑数据为该点于前面一点的平均值,即每两点取一个平均值。
因此当平滑窗口越长时,数据越平滑,因为选取了更多的点取平均值,因此每一点的增幅权重将被降低,如图所示,平滑窗口为[1/50…1/50]
这里写图片描述
解释:如图所示平滑窗口为[1/50…1/50],此情况与原始数据形状偏离较大,因为数据越幅度越大的地方,增幅越小,再被平均了之后权重就变得更小。
为了更好的理解卷积平滑过程,令y = 2*t + randn(100),t的取值范围与正弦函数相同。如图所示
这里写图片描述
解释:平滑窗口为[1/10…/10]。
这里需要注意,无论平滑窗口中每一个元素取多小,结果都不会变成一条水平直线,因为一条直线每一点的增幅都是不变的,例如假设原始数据形状类似一条直线,且每一点增幅为0.1,则
(1)前一点原始:a(n);
卷积平滑之后(a(1)+a(2)+…+a(n))/n;
(2)本点a(n+1)
卷积平滑之后(a(2)+a(3)+…+a(n+1))/n
(3)两点之差(增幅):
原始:a(n+1)-a(n) = 0.1;
平滑:(a(n+1)-a(1))/n = n*0.1/n = 0.1;
所以卷积平滑数据只是平均每一点的增幅,当每一点的增幅都一样时,无论平滑窗口元素的值多小,都不会得到一条水平的直线(不考虑边缘效应),如图所示:
这里写图片描述
解释:平滑窗口为[1/50 1/50…1/50],且对应点与平滑窗口[1/10…1/10]的相同。这也解释了为什么正弦离散点平滑数据会与原始正弦离散点的图像有所不同,因为正弦函数每一点的增幅不同,其导数为cos(t),0点的增幅最大,pi/2点的增幅点最小,因此如果平滑窗口元素值过小时,越靠近极值点,由于其增幅很小,所以其平滑结果越偏离原始离散点。

三、结论
卷积平滑数据方法平滑的是每一点的增幅,且本点的平滑结果为前n点的平均值。适用于原始数据震动幅度不太大于理想数据的情形。

这篇关于卷积平滑数据原理(有边缘效应)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/170033

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数