你一定需要 六款大数据采集平台的架构分析

2023-10-09 00:08

本文主要是介绍你一定需要 六款大数据采集平台的架构分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着大数据越来越被重视,数据采集的挑战变的尤为突出。今天为大家介绍几款数据采集平台:

  • Apache Flume

  • Fluentd

  • Logstash

  • Chukwa

  • Scribe

  • Splunk Forwarder

大数据平台与数据采集

任何完整的大数据平台,一般包括以下的几个过程:

  • 数据采集

  • 数据存储

  • 数据处理

  • 数据展现(可视化,报表和监控)

3bc21cc8d296ba705687687d56d31341.png

其中,数据采集是所有数据系统必不可少的,随着大数据越来越被重视,数据采集的挑战也变的尤为突出。这其中包括:

  • 数据源多种多样

  • 数据量大,变化快

  • 如何保证数据采集的可靠性的性能

  • 如何避免重复数据

  • 如何保证数据的质量

我们今天就来看看当前可用的六款数据采集的产品,重点关注它们是如何做到高可靠,高性能和高扩展。

1、Apache Flume

官网:https://flume.apache.org/

Flume 是Apache旗下的一款开源、高可靠、高扩展、容易管理、支持客户扩展的数据采集系统。Flume使用JRuby来构建,所以依赖Java运行环境。

Flume最初是由Cloudera的工程师设计用于合并日志数据的系统,后来逐渐发展用于处理流数据事件。

bf1be7d82abbc86daccf48cb15c872f2.png

Flume设计成一个分布式的管道架构,可以看作在数据源和目的地之间有一个Agent的网络,支持数据路由。

018c7d5ffbfaf808b672ecbdee5483df.png

每一个agent都由Source,Channel和Sink组成。

Source

Source负责接收输入数据,并将数据写入管道。Flume的Source支持HTTP,JMS,RPC,NetCat,Exec,Spooling Directory。其中Spooling支持监视一个目录或者文件,解析其中新生成的事件。

Channel

Channel 存储,缓存从source到Sink的中间数据。可使用不同的配置来做Channel,例如内存,文件,JDBC等。使用内存性能高但不持久,有可能丢数据。使用文件更可靠,但性能不如内存。

Sink

Sink负责从管道中读出数据并发给下一个Agent或者最终的目的地。Sink支持的不同目的地种类包括:HDFS,HBASE,Solr,ElasticSearch,File,Logger或者其它的Flume Agent。

4e8eb9a88a6c51452a425b05265ab692.png

Flume在source和sink端都使用了transaction机制保证在数据传输中没有数据丢失。

9ddf5cd4f9569f96ee40b92fd52f4b82.png

Source上的数据可以复制到不同的通道上。每一个Channel也可以连接不同数量的Sink。这样连接不同配置的Agent就可以组成一个复杂的数据收集网络。通过对agent的配置,可以组成一个路由复杂的数据传输网络。

ee287176233a8876a24a454e8d11c876.png

配置如上图所示的agent结构,Flume支持设置sink的Failover和Load Balance,这样就可以保证即使有一个agent失效的情况下,整个系统仍能正常收集数据。

e5d03b1fb2fa822f83921eb98a39159b.png

Flume中传输的内容定义为事件(Event),事件由Headers(包含元数据,Meta Data)和Payload组成。

Flume提供SDK,可以支持用户定制开发:

Flume客户端负责在事件产生的源头把事件发送给Flume的Agent。客户端通常和产生数据源的应用在同一个进程空间。常见的Flume客户端有Avro,log4J,syslog和HTTP Post。另外ExecSource支持指定一个本地进程的输出作为Flume的输入。当然很有可能,以上的这些客户端都不能满足需求,用户可以定制的客户端,和已有的FLume的Source进行通信,或者定制实现一种新的Source类型。

同时,用户可以使用Flume的SDK定制Source和Sink。似乎不支持定制的Channel。

2、Fluentd

官网:http://docs.fluentd.org/articles/quickstart

Fluentd是另一个开源的数据收集框架。Fluentd使用C/Ruby开发,使用JSON文件来统一日志数据。它的可插拔架构,支持各种不同种类和格式的数据源和数据输出。最后它也同时提供了高可靠和很好的扩展性。Treasure Data, Inc 对该产品提供支持和维护。

d106a14ccb2bdd239f0dadc992031af0.png

Fluentd的部署和Flume非常相似:

c4a2b73889540d0ea314f8c12e97cc0e.png

Fluentd的架构设计和Flume如出一辙:

c98d5e3e25b73a9783bc5b357cc3a424.png

Fluentd的Input/Buffer/Output非常类似于Flume的Source/Channel/Sink。

Input

Input负责接收数据或者主动抓取数据。支持syslog,http,file tail等。

Buffer

Buffer负责数据获取的性能和可靠性,也有文件或内存等不同类型的Buffer可以配置。

Output

Output负责输出数据到目的地例如文件,AWS S3或者其它的Fluentd。

Fluentd的配置非常方便,如下图:

504cea1c82a9b4fa18092b0d5fe764eb.png

Fluentd的技术栈如下图:

428bbfa397ef10a1121cabd7a52811c3.png

FLuentd和其插件都是由Ruby开发,MessgaePack提供了JSON的序列化和异步的并行通信RPC机制。

4c51220a3fe8e70f526604f9a58fb53b.png

Cool.io是基于libev的事件驱动框架。

FLuentd的扩展性非常好,客户可以自己定制(Ruby)Input/Buffer/Output。

Fluentd从各方面看都很像Flume,区别是使用Ruby开发,Footprint会小一些,但是也带来了跨平台的问题,并不能支持Windows平台。另外采用JSON统一数据/日志格式是它的另一个特点。相对去Flumed,配置也相对简单一些。

3、Logstash

https://github.com/elastic/logstash

Logstash是著名的开源数据栈ELK (ElasticSearch, Logstash, Kibana)中的那个L。

Logstash用JRuby开发,所有运行时依赖JVM。

Logstash的部署架构如下图,当然这只是一种部署的选项。

15fc72234074a3682f1019481aa555df.png

一个典型的Logstash的配置如下,包括了Input,filter的Output的设置。

be06e4fc2cb063cfed16526da1406632.png

几乎在大部分的情况下ELK作为一个栈是被同时使用的。所有当你的数据系统使用ElasticSearch的情况下,logstash是首选。

4、Chukwa

官网:https://chukwa.apache.org/

Apache Chukwa是apache旗下另一个开源的数据收集平台,它远没有其他几个有名。Chukwa基于Hadoop的HDFS和Map Reduce来构建(显而易见,它用Java来实现),提供扩展性和可靠性。Chukwa同时提供对数据的展示,分析和监视。很奇怪的是它的上一次github的更新事7年前。可见该项目应该已经不活跃了。

Chukwa的部署架构如下:

5b9fce4990a7c4754369f64de95b7ae9.png

Chukwa的主要单元有:Agent,Collector,DataSink,ArchiveBuilder,Demux等等,看上去相当复杂。由于该项目已经不活跃,我们就不细看了。

5、Scribe

代码托管:https://github.com/facebookarchive/scribe

Scribe是Facebook开发的数据(日志)收集系统。已经多年不维护,同样的,就不多说了。

794d6f2e7c56cdd1d4cdb667f6d27bc1.png

6、Splunk Forwarder

官网:http://www.splunk.com/

以上的所有系统都是开源的。在商业化的大数据平台产品中,Splunk提供完整的数据采金,数据存储,数据分析和处理,以及数据展现的能力。

Splunk是一个分布式的机器数据平台,主要有三个角色:

Search Head负责数据的搜索和处理,提供搜索时的信息抽取。

Indexer负责数据的存储和索引

Forwarder,负责数据的收集,清洗,变形,并发送给Indexer

62a0b22d8fe71f22da7dcdc467ead2bd.png

Splunk内置了对Syslog,TCP/UDP,Spooling的支持,同时,用户可以通过开发Script Input和Modular Input的方式来获取特定的数据。在Splunk提供的软件仓库里有很多成熟的数据采集应用,例如AWS,数据库(DBConnect)等等,可以方便的从云或者是数据库中获取数据进入Splunk的数据平台做分析。

这里要注意的是,Search Head和Indexer都支持Cluster的配置,也就是高可用,高扩展的,但是Splunk现在还没有针对Farwarder的Cluster的功能。也就是说如果有一台Farwarder的机器出了故障,数据收集也会随之中断,并不能把正在运行的数据采集任务Failover到其它的Farwarder上。

总结

我们简单讨论了几种流行的数据收集平台,它们大都提供高可靠和高扩展的数据收集。大多平台都抽象出了输入,输出和中间的缓冲的架构。利用分布式的网络连接,大多数平台都能实现一定程度的扩展性和高可靠性。

其中Flume,Fluentd是两个被使用较多的产品。如果你用ElasticSearch,Logstash也许是首选,因为ELK栈提供了很好的集成。Chukwa和Scribe由于项目的不活跃,不推荐使用。

Splunk作为一个优秀的商业产品,它的数据采集还存在一定的限制,相信Splunk很快会开发出更好的数据收集的解决方案。

End.

Flume一文深入浅出

Flume+Kafka双剑合璧玩转大数据平台日志采集

Flume NG:Flume 发展史上的第一次革命

22402da627f54687dd2ef7261897ae92.png

这篇关于你一定需要 六款大数据采集平台的架构分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/168909

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda