【路径规划】基于海鸥优化算法实现栅格地图机器人路径规划附matlab代码

本文主要是介绍【路径规划】基于海鸥优化算法实现栅格地图机器人路径规划附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

随着科技的不断进步和人工智能的快速发展,机器人正逐渐成为我们生活中不可或缺的一部分。机器人在各个领域的应用越来越广泛,其中之一就是在栅格地图中的路径规划。路径规划是指在给定的地图上,找到一条从起点到终点的最优路径。而海鸥优化算法则是一种基于鸟群行为的优化算法,能够有效地解决路径规划问题。

栅格地图是将真实世界的环境划分成一系列的方格,每个方格代表一个空间单元。在栅格地图中,机器人可以通过移动到相邻的方格来实现路径的转移。而路径规划的目标是找到一条从起点到终点的最短路径,同时避免碰撞障碍物。

海鸥优化算法是一种模拟鸟群觅食行为的优化算法。鸟群觅食时,会通过信息素和个体间的相互作用来寻找最佳的食物源。类似地,海鸥优化算法通过模拟鸟群的觅食行为来寻找最优解。这种算法的优势在于它能够同时考虑全局搜索和局部搜索,从而有效地避免陷入局部最优解。

在栅格地图中,机器人的移动可以看作是鸟群的觅食过程。每个方格可以看作是一个潜在的食物源,而机器人则是鸟群中的一只鸟。机器人通过移动到相邻的方格来搜索食物源,同时通过信息素来指导移动的方向。在海鸥优化算法中,每只鸟都会根据自身的经验和邻居的信息素来更新自己的位置和速度,从而逐步收敛到最优解。

实现基于海鸥优化算法的栅格地图机器人路径规划可以分为以下几个步骤:

  1. 初始化鸟群的位置和速度。在栅格地图中,可以随机生成一定数量的机器人,并将它们放置在地图上的不同方格中。同时,为每只机器人分配一个初始速度,用于指导移动的方向。

  2. 计算适应度函数。适应度函数是评价每只机器人路径质量的指标。在路径规划中,适应度函数可以考虑路径的长度和避障能力等因素。通过计算适应度函数,可以评估每只机器人的路径质量,从而为后续的优化提供依据。

  3. 更新位置和速度。根据海鸥优化算法的原理,每只机器人根据自身的经验和邻居的信息素来更新自己的位置和速度。位置的更新可以通过移动到相邻的方格来实现,速度的更新可以通过调整移动的方向和速度来实现。

  4. 重复步骤2和步骤3,直到满足停止条件。停止条件可以是达到一定的迭代次数或者找到了满意的路径。

通过实现基于海鸥优化算法的栅格地图机器人路径规划,我们可以得到一条最优的路径,同时避免碰撞障碍物。这种方法不仅能够提高路径规划的效率,还能够适应不同的地图和机器人的需求。

总结起来,海鸥优化算法是一种基于鸟群觅食行为的优化算法,通过模拟鸟群的觅食行为来寻找最优解。在栅格地图机器人路径规划中,海鸥优化算法可以帮助机器人找到一条最短路径,并避免碰撞障碍物。通过合理的初始化、适应度函数的计算和位置速度的更新,我们可以实现高效准确的路径规划。基于海鸥优化算法的栅格地图机器人路径规划在实际应用中具有广阔的前景,将为机器人的自主导航和路径规划提供强有力的支持。

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

目标函数设定

⛄ 核心代码

function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

⛄ 运行结果

⛄ 参考文献

[1] 陈克伟,唐伟,胡雪松,等.一种基于改进海鸥算法的机器人路径规划方法:CN202111460730.6[P].CN113867368A[2023-08-26].

[2] 陈克伟,胡雪松,唐伟,等.一种基于全局海鸥算法的移动机器人路径规划方法:202111460726[P][2023-08-26].

[3] 周东健,张兴国,马海波,等.基于栅格地图-蚁群算法的机器人最优路径规划[J].南通大学学报:自然科学版, 2013, 12(4):4.DOI:10.3969/j.issn.1673-2340.2013.04.021.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【路径规划】基于海鸥优化算法实现栅格地图机器人路径规划附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/168570

相关文章

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句