吴恩达.深度学习系列-C1神经网络与深度学习-w3-(作业:一个隐藏层进行二维数据分类)

本文主要是介绍吴恩达.深度学习系列-C1神经网络与深度学习-w3-(作业:一个隐藏层进行二维数据分类),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 前言
  • Planar data classification with one hidden layer
    • 1 - Packages
    • 2 - Dataset
    • 3 - Simple Logistic Regression
    • 4 - Neural Network model
      • 4.1 - Defining the neural network structure
      • 4.2 - Initialize the model’s parameters
      • 4.3 - The Loop
      • 4.4 - Integrate parts 4.1, 4.2 and 4.3 in nn_model()
      • 4.5 Predictions
      • 4.6 - Tuning hidden layer size (optional/ungraded exercise)
    • 5) Performance on other datasets

前言

**注意:coursera要求不要在互联网公布自己的作业。如果你在学习这个课程,建议你进入课程系统自行完成作业。使用逻辑回归作为一个最简单的类似神经网络来进行图像判别。我觉得代码有参考和保留的意义。v
使用一个 2×4×1的网络来对数据进行二分类。**
比较麻烦的是什么时候用点乘,什么时候用矩阵乘法。见【4.3】小节的代码。虽然代码都提交通过审核,但自己还需要梳理一下。
I.Cost的计算
J=1mi=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(13) (13) J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) )
用点乘:

    logprobs = np.multiply(np.log(A2),Y)+np.multiply(np.log(1-A2),1-Y)cost = - np.sum(logprobs)/m 

II.gradient的计算

    # Backward propagation: calculate dW1, db1, dW2, db2. ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)#按单样本进行简化考量,参数的梯度的形应该与参数的形一致,如:dZ2.shape==Z2.shape=(1,1);dW1.shape==W1=(4,2)dZ2 = A2-Y  # A2(1,1)-Y(1,1)=dZ2(1,1)dW2 = np.dot(dZ2,A1.T)/m   #dZ2(1,1)*A1.T(1,4)=dW2(1,4),==>使用矩阵乘!db2 = np.sum(dZ2,axis=1,keepdims=True)/m   #np.sum(dW2(1,4))/m=db2(1,1)dZ1 = np.multiply(np.multiply(W2.T,dZ2),1 - np.power(A1, 2))  #输出dZ1=(4,1)。W2.T(4,1)×dZ2(1,1)  [1 - np.power(A1, 2)],所以内外两层的乘号都是点乘。dW1 = np.dot(dZ1,X.T)/m   #dZ1(4,1)*X.T(1,2)=dW1(4,2)===>使用矩阵乘db1 = np.sum(dZ1,axis=1,keepdims=True)/m    ### END CODE HERE ###

是否使用点乘还是矩阵乘,有一个判别方法,把输入的shape和应该输出的shape提前标出来,那么比较容易判别用点乘还是矩阵乘。输入的形与输出一致,那么肯定是点乘,其他情况是用矩阵乘。如果标出的形还不好判别,可以进一步画出是行还是列用来表达单个样本中的n个特征。或者只按一条样本的shape来进行判断。如上。

Planar data classification with one hidden layer

Welcome to your week 3 programming assignment. It’s time to build your first neural network, which will have a hidden layer. You will see a big difference between this model and the one you implemented using logistic regression.

You will learn how to:
- Implement a 2-class classification neural network with a single hidden layer
- Use units with a non-linear activation function, such as tanh
- Compute the cross entropy loss
- Implement forward and backward propagation

1 - Packages

Let’s first import all the packages that you will need during this assignment.
- numpy is the fundamental package for scientific computing with Python.
- sklearn provides simple and efficient tools for data mining and data analysis.
- matplotlib is a library for plotting graphs in Python.
- testCases provides some test examples to assess the correctness of your functions
- planar_utils provide various useful functions used in this assignment

# Package imports
import numpy as np
import matplotlib.pyplot as plt
from testCases_v2 import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets%matplotlib inlinenp.random.seed(1) # set a seed so that the results are consistent
/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')
/opt/conda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment.warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.')

2 - Dataset

First, let’s get the dataset you will work on. The following code will load a “flower” 2-class dataset into variables X and Y.

X, Y = load_planar_dataset()

Visualize the dataset using matplotlib. The data looks like a “flower” with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data.

# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

这里写图片描述

You have:
- a numpy-array (matrix) X that contains your features (x1, x2)
- a numpy-array (vector) Y that contains your labels (red:0, blue:1).

Lets first get a better sense of what our data is like.

Exercise: How many training examples do you have? In addition, what is the shape of the variables X and Y?

Hint: How do you get the shape of a numpy array? (help)

### START CODE HERE ### (≈ 3 lines of code)
shape_X = X.shape
shape_Y = Y.shape
m = shape_X[1]  # training set size
### END CODE HERE ###print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!

Expected Output:

**shape of X** (2, 400)
**shape of Y**(1, 400)
**m** 400

3 - Simple Logistic Regression

Before building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn’s built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset.

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X.T, Y.T);
/opt/conda/lib/python3.5/site-packages/sklearn/utils/validation.py:515: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().y = column_or_1d(y, warn=True)

You can now plot the decision boundary of these models. Run the code below.

# Plot the decision boundary for logistic regression
plot_decision_boundary(lambda x: clf.predict(x), X, Y)
plt.title("Logistic Regression")# Print accuracy
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +'% ' + "(percentage of correctly labelled datapoints)")
Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

这里写图片描述

Expected Output:

**Accuracy** 47%

Interpretation: The dataset is not linearly separable, so logistic regression doesn’t perform well. Hopefully a neural network will do better. Let’s try this now!

4 - Neural Network model

Logistic regression did not work well on the “flower dataset”. You are going to train a Neural Network with a single hidden layer.

Here is our model:

这里写图片描述
Mathematically:

For one example x(i) x ( i ) :

z[1](i)=W[1]x(i)+b[1](1) (1) z [ 1 ] ( i )

这篇关于吴恩达.深度学习系列-C1神经网络与深度学习-w3-(作业:一个隐藏层进行二维数据分类)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/164338

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl