机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现

本文主要是介绍机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. EM算法概述
    • 2. 原理及数学表达
    • 3. 代码实现
    • 4. 总结

1. EM算法概述

  EM (Expectation Maximization) 算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization)。
  一般的对样本模型的建立,是从样本的观测数据入手,找出样本的模型参数。常用的方法是最大似然估计,即利用已知的样本观测结果来反推最有可能的导致这个结果的样本参数。
  但实际的样本观测中,可能存在未观测到的隐含数据,此时我们未知的有隐含数据和模型参数,无法直接用极大化对数似然函数得到模型分布的参数。
  对于未知的隐变量,我们先猜想隐变量,这是EM算法中的E步。基于已知的观测数据和猜想的隐变量,来极大化对数似然,求解我们的模型参数,这是EM算法的M布。当然,这个猜想的隐变量一般情况下是无法满足我们想要的结果。那么,我们基于刚刚求解的模型参数,继续猜想隐含数据,然后继续E步和M步,直到模型分布参数基本无变化,算法收敛,此时样本数据找到了合适的模型参数。
  举一个例子,我有一包糖果,为了公平,我要平分给我的妹妹。此时,我并不知道糖果的重量。于是乎,我随机把糖果分在两个袋子里。然后我掂量两个袋子的重量,感觉一个重一个轻,这就是EM算法的E步。那么我从重的袋子里抓一把糖果,放在轻的袋子里,此时,我并不知道我抓一把糖果有多重,放好之后,又掂量两个袋子的重量。这就是EM算法的M步。然后反复的分糖果,反复的掂量,直到我感觉两个袋子差不多重,那么此时,就达到我平分糖果的目的了。

2. 原理及数学表达

输入:观测变量数据 Y Y Y,隐变量数据 Z Z Z,联合分布 P ( Y , Z ∣ ) P(Y,Z| ) P(YZ),条件分布 P ( Z ∣ Y , ) P(Z|Y,) P(ZY,)
输出:模型参数 。

  1. 选择参数的初值 θ ( 0 ) \theta^{(0)} θ(0),开始迭代; 初值可以任意选择,但是EM算法对初值是敏感的,不同的初值可能得到不同的参数估计值。
  2. E步:记 θ ( i ) \theta^{(i)} θ(i)为第 i i i次迭代参数的估计值,在第i+1次迭代的E步,计算
    Q ( θ , θ ( i ) ) = E z ∣ log ⁡ P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ∣ ∑ Z log ⁡ P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) ∣ \begin{array}{c} Q\left(\theta, \theta^{(i)}\right)=E z|\log P(Y, Z \mid \theta)| Y, \theta^{(i)} \mid \\ \ \ \ \ \sum_{Z} \log P(Y, Z \mid \theta) P\left(Z \mid Y, \theta^{(i)}\right) \mid \end{array} Q(θ,θ(i))=EzlogP(Y,Zθ)Y,θ(i)    ZlogP(Y,Zθ)P(ZY,θ(i))
    这里, P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)} ) P(ZYθ(i))是在给定观测数据 Y Y Y和当前的参数估计 θ ( i ) \theta^{(i)} θ(i)下隐变量数据Z的条件概率分布。 Q函数是EM算法的核心。完全数据的对数似然函数 log ⁡ P ( Y , Z ∣ θ ) \log{P(Y,Z|\theta)} logP(Y,Zθ)关于在给定观测数据 Y Y Y和当前参数 θ ( i ) \theta^{(i)} θ(i)下对未观测数据Z的条件概率分布 P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)} ) P(ZYθ(i))的期望就是Q函数。
  3. M步:求 Q ( θ , θ ( i ) ) Q(\theta,\theta^{(i)}) Q(θ,θ(i))使极大化的 θ ( i ) \theta^{(i)} θ(i),确定第i+1次迭代的参数的 估计值 θ ( i + 1 ) = arg ⁡ max ⁡ θ Q ( θ , θ ( i ) ) \theta^{(i+1)}=\arg \max _{\theta} Q\left(\theta, \theta^{(i)}\right) θ(i+1)=argmaxθQ(θ,θ(i))
  4. 重复第2步和第3步,直到收敛。

3. 代码实现

  EM算法在高斯混合模型中的应用,用高斯混合模型对数据聚类,认为任意样本数据都可以由多个高斯分布函数去近似。
  通过make_blobs函数建立以[-1,-1], [0,0], [1,1], [2,2]为中心,[0.5, 0.3, 0.4, 0.3]为标准差的数据样本集。通过GaussianMixture函数对样本进行聚类,设置n_components=4,即四个高斯分布函数。得到结果可以看出,能对数据集很进行很好的聚类。

# 导入基本库
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.mixture import GaussianMixture# 生成样本特征和簇类别
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]],cluster_std=[0.5, 0.3, 0.4, 0.3])
'''
X为样本特征,Y为样本簇类别
n_samples: 表示数据样本点个数
n_features: 表示数据的维度
centers: 产生数据的中心点
cluster_std: 数据集的标准差
'''##设置gmm函数
gmm = GaussianMixture(n_components=4, covariance_type='full').fit(X)
'''
n_components:混合高斯模型个数
covariance_type:通过EM算法估算参数时使用的协方差类型,默认是'full'
'''
##训练数据
y_pred = gmm.predict(X)##绘图
ax1 = plt.subplot(211)
ax1.set_title('original data')
plt.scatter(X[:, 0], X[:, 1],c='gray',marker='.')
ax2 = plt.subplot(212)
ax2.set_title('cluster data')
plt.scatter(X[:, 0], X[:, 1], c=y_pred,marker='.')
plt.show()

在这里插入图片描述

4. 总结

  当我们的样本数据都是可观测的数据是,那么对于给定的数据可以用极大似然估计,或者贝叶斯估计法来求解概率模型。但当样本数据存在隐变量时,那么隐变量很难由最大似然求解,这就需要EM算法来求解含有隐变量的概率模型参数。
  粗略的理解EM算法,在求解样本模型时,模型参数θ和未观测数据Z都是未知的,在每次迭代的过程中,一次固定一个变量,对另外的变量求基质。E步,固定θ,优化Q,M步,固定Q,优化θ。交替的将极值推向最大,求解极大似然估计。
  EM算法简单普适,但存在会收敛到局部最优的问题。

这篇关于机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154701

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)