机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现

本文主要是介绍机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1. EM算法概述
    • 2. 原理及数学表达
    • 3. 代码实现
    • 4. 总结

1. EM算法概述

  EM (Expectation Maximization) 算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计。EM算法的每次迭代由两步组成:E步,求期望(expectation);M步,求极大(maximization)。
  一般的对样本模型的建立,是从样本的观测数据入手,找出样本的模型参数。常用的方法是最大似然估计,即利用已知的样本观测结果来反推最有可能的导致这个结果的样本参数。
  但实际的样本观测中,可能存在未观测到的隐含数据,此时我们未知的有隐含数据和模型参数,无法直接用极大化对数似然函数得到模型分布的参数。
  对于未知的隐变量,我们先猜想隐变量,这是EM算法中的E步。基于已知的观测数据和猜想的隐变量,来极大化对数似然,求解我们的模型参数,这是EM算法的M布。当然,这个猜想的隐变量一般情况下是无法满足我们想要的结果。那么,我们基于刚刚求解的模型参数,继续猜想隐含数据,然后继续E步和M步,直到模型分布参数基本无变化,算法收敛,此时样本数据找到了合适的模型参数。
  举一个例子,我有一包糖果,为了公平,我要平分给我的妹妹。此时,我并不知道糖果的重量。于是乎,我随机把糖果分在两个袋子里。然后我掂量两个袋子的重量,感觉一个重一个轻,这就是EM算法的E步。那么我从重的袋子里抓一把糖果,放在轻的袋子里,此时,我并不知道我抓一把糖果有多重,放好之后,又掂量两个袋子的重量。这就是EM算法的M步。然后反复的分糖果,反复的掂量,直到我感觉两个袋子差不多重,那么此时,就达到我平分糖果的目的了。

2. 原理及数学表达

输入:观测变量数据 Y Y Y,隐变量数据 Z Z Z,联合分布 P ( Y , Z ∣ ) P(Y,Z| ) P(YZ),条件分布 P ( Z ∣ Y , ) P(Z|Y,) P(ZY,)
输出:模型参数 。

  1. 选择参数的初值 θ ( 0 ) \theta^{(0)} θ(0),开始迭代; 初值可以任意选择,但是EM算法对初值是敏感的,不同的初值可能得到不同的参数估计值。
  2. E步:记 θ ( i ) \theta^{(i)} θ(i)为第 i i i次迭代参数的估计值,在第i+1次迭代的E步,计算
    Q ( θ , θ ( i ) ) = E z ∣ log ⁡ P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ∣ ∑ Z log ⁡ P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) ∣ \begin{array}{c} Q\left(\theta, \theta^{(i)}\right)=E z|\log P(Y, Z \mid \theta)| Y, \theta^{(i)} \mid \\ \ \ \ \ \sum_{Z} \log P(Y, Z \mid \theta) P\left(Z \mid Y, \theta^{(i)}\right) \mid \end{array} Q(θ,θ(i))=EzlogP(Y,Zθ)Y,θ(i)    ZlogP(Y,Zθ)P(ZY,θ(i))
    这里, P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)} ) P(ZYθ(i))是在给定观测数据 Y Y Y和当前的参数估计 θ ( i ) \theta^{(i)} θ(i)下隐变量数据Z的条件概率分布。 Q函数是EM算法的核心。完全数据的对数似然函数 log ⁡ P ( Y , Z ∣ θ ) \log{P(Y,Z|\theta)} logP(Y,Zθ)关于在给定观测数据 Y Y Y和当前参数 θ ( i ) \theta^{(i)} θ(i)下对未观测数据Z的条件概率分布 P ( Z ∣ Y , θ ( i ) ) P(Z|Y,\theta^{(i)} ) P(ZYθ(i))的期望就是Q函数。
  3. M步:求 Q ( θ , θ ( i ) ) Q(\theta,\theta^{(i)}) Q(θ,θ(i))使极大化的 θ ( i ) \theta^{(i)} θ(i),确定第i+1次迭代的参数的 估计值 θ ( i + 1 ) = arg ⁡ max ⁡ θ Q ( θ , θ ( i ) ) \theta^{(i+1)}=\arg \max _{\theta} Q\left(\theta, \theta^{(i)}\right) θ(i+1)=argmaxθQ(θ,θ(i))
  4. 重复第2步和第3步,直到收敛。

3. 代码实现

  EM算法在高斯混合模型中的应用,用高斯混合模型对数据聚类,认为任意样本数据都可以由多个高斯分布函数去近似。
  通过make_blobs函数建立以[-1,-1], [0,0], [1,1], [2,2]为中心,[0.5, 0.3, 0.4, 0.3]为标准差的数据样本集。通过GaussianMixture函数对样本进行聚类,设置n_components=4,即四个高斯分布函数。得到结果可以看出,能对数据集很进行很好的聚类。

# 导入基本库
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.mixture import GaussianMixture# 生成样本特征和簇类别
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [0,0], [1,1], [2,2]],cluster_std=[0.5, 0.3, 0.4, 0.3])
'''
X为样本特征,Y为样本簇类别
n_samples: 表示数据样本点个数
n_features: 表示数据的维度
centers: 产生数据的中心点
cluster_std: 数据集的标准差
'''##设置gmm函数
gmm = GaussianMixture(n_components=4, covariance_type='full').fit(X)
'''
n_components:混合高斯模型个数
covariance_type:通过EM算法估算参数时使用的协方差类型,默认是'full'
'''
##训练数据
y_pred = gmm.predict(X)##绘图
ax1 = plt.subplot(211)
ax1.set_title('original data')
plt.scatter(X[:, 0], X[:, 1],c='gray',marker='.')
ax2 = plt.subplot(212)
ax2.set_title('cluster data')
plt.scatter(X[:, 0], X[:, 1], c=y_pred,marker='.')
plt.show()

在这里插入图片描述

4. 总结

  当我们的样本数据都是可观测的数据是,那么对于给定的数据可以用极大似然估计,或者贝叶斯估计法来求解概率模型。但当样本数据存在隐变量时,那么隐变量很难由最大似然求解,这就需要EM算法来求解含有隐变量的概率模型参数。
  粗略的理解EM算法,在求解样本模型时,模型参数θ和未观测数据Z都是未知的,在每次迭代的过程中,一次固定一个变量,对另外的变量求基质。E步,固定θ,优化Q,M步,固定Q,优化θ。交替的将极值推向最大,求解极大似然估计。
  EM算法简单普适,但存在会收敛到局部最优的问题。

这篇关于机器学习-EM算法机器推广基于GaussianMixture函数对样本进行聚类-python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/154701

相关文章

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

在React聊天应用中实现图片上传功能

《在React聊天应用中实现图片上传功能》在现代聊天应用中,除了文字和表情,图片分享也是一个重要的功能,本文将详细介绍如何在基于React的聊天应用中实现图片上传和预览功能,感兴趣的小伙伴跟着小编一起... 目录技术栈实现步骤1. 消息组件改造2. 图片预览组件3. 聊天输入组件改造功能特点使用说明注意事项

VSCode中配置node.js的实现示例

《VSCode中配置node.js的实现示例》本文主要介绍了VSCode中配置node.js的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一.node.js下载安装教程二.配置npm三.配置环境变量四.VSCode配置五.心得一.no

debian12安装docker的实现步骤

《debian12安装docker的实现步骤》本文主要介绍了debian12安装docker的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录步骤 1:更新你的系统步骤 2:安装依赖项步骤 3:添加 docker 的官方 GPG 密钥步骤

基于Redis实现附近商铺查询功能

《基于Redis实现附近商铺查询功能》:本文主要介绍基于Redis实现-附近商铺查询功能,这个功能将使用到Redis中的GEO这种数据结构来实现,需要的朋友可以参考下... 目录基于Redis实现-附近查询1.GEO相关命令2.使用GEO来实现以下功能3.使用Java实现简China编程单的附近商铺查询4.Red

使用Python实现实时金价监控并自动提醒功能

《使用Python实现实时金价监控并自动提醒功能》在日常投资中,很多朋友喜欢在一些平台买点黄金,低买高卖赚点小差价,但黄金价格实时波动频繁,总是盯着手机太累了,于是我用Python写了一个实时金价监控... 目录工具能干啥?手把手教你用1、先装好这些"食材"2、代码实现讲解1. 用户输入参数2. 设置无头浏

一文教你如何解决Python开发总是import出错的问题

《一文教你如何解决Python开发总是import出错的问题》经常朋友碰到Python开发的过程中import包报错的问题,所以本文将和大家介绍一下可编辑安装(EditableInstall)模式,可... 目录摘要1. 可编辑安装(Editable Install)模式到底在解决什么问题?2. 原理3.

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Android与iOS设备MAC地址生成原理及Java实现详解

《Android与iOS设备MAC地址生成原理及Java实现详解》在无线网络通信中,MAC(MediaAccessControl)地址是设备的唯一网络标识符,本文主要介绍了Android与iOS设备M... 目录引言1. MAC地址基础1.1 MAC地址的组成1.2 MAC地址的分类2. android与I

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async