Python逐日填补Excel中的日期并用0值填充缺失日期的数据

2023-10-06 01:39

本文主要是介绍Python逐日填补Excel中的日期并用0值填充缺失日期的数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文介绍基于Python语言,读取一个不同的列表示不同的日期.csv格式文件,将其中缺失的日期数值加以填补;并用0值对这些缺失日期对应的数据加以填充的方法。

  首先,我们明确一下本文的需求。现在有一个.csv格式文件,其第一列表示日期,用2021001这样的格式记录每一天的日期;其后面几列则是这一日期对应的数据。如下图所示。

  从上图可以看到,第一列(紫色框内)的日期有很多缺失值,例如一下子就从第001天跳到了005天,然后又直接到了042天。我们希望,基于这一文件,首先逐日填补缺失的日期;其次,对于这些缺失日期的数据(后面四列),就都用0值来填充即可。最后,我们希望用一个新的.csv格式文件来存储我们上述修改好的数据。

  知道了需求,我们就可以开始代码的撰写;具体代码如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Oct  5 14:58:19 2023@author: fkxxgis
"""import pandas as pdinput_file = "E:/04_Reconstruction/03_Image/Data.csv"
output_file = "E:/04_Reconstruction/03_Image/Data_AllYear.csv"df = pd.read_csv(input_file)
df['time'] = pd.to_datetime(df['time'], format='%Y%j')df.set_index('time', inplace=True)start_date = pd.to_datetime('2021001', format='%Y%j')
end_date = pd.to_datetime('2021365', format='%Y%j')
date_range = pd.date_range(start=start_date, end=end_date, freq='D')df_filled = df.reindex(date_range, fill_value=0)df_filled.reset_index(inplace=True)
df_filled['time'] = df_filled['index'].dt.strftime('%Y%j')df_filled.drop(df_filled.columns[0], axis=1, inplace=True)cols = list(df_filled.columns)
cols = [cols[-1]] + cols[:-1]
df_filled = df_filled[cols]df_filled.to_csv(output_file, index=False)

  其中,我们首先导入所需的库,并定义输入和输出文件的路径。随后,我们使用pd.read_csv方法读取输入文件,并将数据存储于df中。

  接下来,我们使用pd.to_datetime方法将df中的时间列转换为日期时间格式,并使用set_index方法将时间列设置为DataFrame的索引。

  随后,计算需要填补的日期范围——我们将字符串'2021001'转换为日期时间格式并作为结束日期,将字符串'2021365'转换为日期时间格式并作为结束日期,使用pd.date_range方法生成完整的日期范围,频率为每天。

  接下来,使用reindex方法对DataFrame进行重新索引,以包含完整的日期范围,并使用0填充缺失值。其次,使用reset_index方法将索引列还原为普通列,并使用dt.strftime方法将时间列转换回字符串格式。

  最后,我们使用drop方法删除第一列(否则最终输出的结果文件的第一列是前面的索引值,而不是time列),并将最后一列(也就是time列)移到第一列。随后,即可将修改后的DataFrame保存到输出文件中,使用to_csv方法,并设置index=False以避免保存索引列。

  运行上述代码,即可得到如下图所示的结果文件。

  可以看到,此时文件中已经是逐日的数据了,且对于那些新增日期的数据,都是0来填充的。

  至此,大功告成。

欢迎关注:疯狂学习GIS

这篇关于Python逐日填补Excel中的日期并用0值填充缺失日期的数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/152527

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.