一文详解Python中数据清洗与处理的常用方法

2025-01-28 16:50

本文主要是介绍一文详解Python中数据清洗与处理的常用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下...

在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战。

本文总结了多种数据清洗与处理方法:

缺失值处理包括删除缺失值、固定值填充、前后向填充以及删除缺失率高的列;

重复值处理通过删除或标记重复项解决数据冗余问题;

异常值处理采用替换或标记方法控制数据质量;

数据类型转换确保数据格式符合分析需求,例如转换为整数或日期类型;

文本清洗包括去空格、字符替换及转换大小写等操作python

此外,还介绍了数据分组统计、数据分箱与标准化的应用。例如,分组统计可按列求均值,数据分箱能为连续变量赋予分类标签,而归一化则通过压缩数据范围提升模型表现。这些方法能有效提高数据质量与分析效率,是数据科学中不可或缺的能。         

缺失值处理

删除缺失值

df_dropped = df.dropna()
print("\n删除缺失值后:")
print(df_dropped)

用固定值填充缺失值

df_filled = df.fillna({
    'title': 'Unknown',
    'author': 'Unknown Author',
    'price': df['price'].mean()
})
print("\n填充缺失值后:")
print(df_filled)

前向填充

df_ffill = df.fillna(method='ffill')
print("\n前向填充缺失值后:")
print(df_ffill)

后向填充

df_bfill = df.fillna(method='bfill')
print("\n后向填充缺失值后:")
print(df_bfill)

删除缺失率高的列

df_dropped_cols = df.dropna(axis=1, thresh=len(df) * 0.5)  
print("\n删除缺失率高的列后:")
print(df_dropped_cols)

重复值处理

删除重复值

df_deduplicated = df.drop_duplicates()
print("\n删除重复值后:")
print(df_deduplicated)

标记重复值

df['is_duplicate'] = df.duplicated()
print("\n标记重复值后:")
print(df)

异常值处理

替换异常值

df['price'] = df['price'].apply(lambda x: x if 0 <= x <= 100 else df['price'].mean())
print("\n替换异常值后python:")
print(df)

标记异常值

df['is_outlier'] = df['price'].apply(lambda x: 1 if x < 0 or x > 100 else 0)
print("\n标记异常值后:")
print(df)

数据类型转换

转换为整数类型

df['price'] = df['price'].astype(int)
print("\n转换为整数后:")
print(df)

转换为日期类型

df['date'] = pd.to_datetime(df['date'], errors='coerce')
print("\n转换为日期类型后:")
print(df)

文本清洗

去掉两端空格

df['title'] = df['title'].str.strip()
print("\n去掉两端空格后:")
print(df)

替换特定字符

df['title'] = df['title'].str.replace('[^a-zA-Z0-9\s]', '', regex=True)
print("\n替换特定字符后:")
print(df)

转换为小写

df['title'] = df['title'].str.lower()
print("\n转换为小写后:")
print(dfwww.chinasem.cn)

数据分组统计

按列分组求均值

grouped = df.groupby('author')['price'].mean()
print("\n按作者分组的平均价格:")
print(grouped)

数据分箱

按价格分箱

bins = [0, 10, 20, 30]
labels = ['低', '中', '高']
df['price_level'] = pd.cut(df['price'], bins=bins, labels=labels, right=False)
print("\pythonn按价格分箱后:")
print(df)

数据标准化

归一化处理

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df['price_scaled']js = scaler.fit_transform(df[['price']])
print("\n归一化后的数据:")
print(df)

到此这篇关于一文详解python中数据清洗与处理的常用方法的文章就介绍到这了,更多相关Python数据清洗与处理内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于一文详解Python中数据清洗与处理的常用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153253

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指