Python实现数据清洗的18种方法

2025-01-19 04:50

本文主要是介绍Python实现数据清洗的18种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学...

数据清洗可能是你们遇到的第一个大挑战,但别担心,python的魔力在于能用简洁的代码解决复杂问题。今天,我们就来学习如何用一行代码完成数据清洗的十八个小绝招。准备好,让我们一起化繁为简,成为数据清洗的高手!

1. 去除字符串两边空格

data = "   Hello World!   "  
cleaned_data = data.strip()  # 神奇的一行,左右空格拜拜  

  • 解读:strip()方法去掉字符串首尾的空白字符,简单高效。

2. 转换数据类型

num_str = "123"  
num_int = int(num_str)  # 字符串转整数,就是ihEsBzeS这么直接  
  • 注意:转换时要确保数据格式正确,否则会报错。

3. 大小写转换

text = "Python is Awesome"  
lower_text = text.lower()  # 全部变小写,便于统一处理  
upper_text = text.upper()  # 或者全部大写,随你心情  

4. 移除列表中的重复元素

my_list = [1, 2, 2, 3, 4, 4]  
unique_list = list(set(my_list))  # 集合特性,去重无压力  
  • 小贴士:这招虽好,但改变了原列表顺序哦。

5. 快速统计元素出现次数

from collections import Counter  
data = ['apple', 'banana', 'apple', 'orange']  
counts = dict(Counter(data))  # 想要知道谁最受欢迎?  
  • 解读:Counter是统计神器,轻松获取频率。

6. 字符串分割成列表

sentence = "Hello world"  
words = sentence.split(" ")  # 分割符默认为空格,一句话变单词列表  

7. 列表合并

list1 = [1, 2, 3]  
list2 = [4, 5, 6]  
merged_list = list1 + list2  # 合并列表,就这么简单  

8. 数据填充

my_list = [1, 2]  
filled_list = my_list * 3  # 重复三次,快速填充列表  

9. 提取日期时间

from datetime import datetime  
date_str = "2023-04-01"  
date_obj = datetime.strptime(date_str, "%Y-%m-%d")  # 日期字符串变对象  
  • 关键点:%Y-%m-%d是日期格式,按需调整。

10. 字符串替换

old_string = "Python is fun."  
new_string = old_string.replace("fun", "awesome")  # 改头换面,一言既出  

11. 快速排序

numbers = [5, 2, 9, 1, 5]  
sorted_numbers = sorted(numbers)  # 自然排序,升序默认  
  • 进阶:reverse=True可降序排列。

12. 提取数字

mixed_str = "The year is 2023"  
nums = ''.join(filter(str.isdigit, mixed_str))  # 只留下数字,其余走开  
  • 解密filter函数配合isdigit,只保留数字字符。

13. 空值处理(假设是列表)

data_list = [None, 1, 2, None, 3]  
filtered_list = [x for x in data_list if x is not None]  # 拒绝空值,干净利落  
  • 语法糖:列表推导式,简洁优雅。

14. 字典键值对互换

my_dict = {"key1": "value1", "key2": "value2"}  
swapped_dict = {v: k for k, v in my_dict.items()}  # 翻转乾坤,键变值,值变键  

15. 平均值计算

numbers = [10, 20, 30, 40]  
average = sum(numbers) / len(numbers)  # 平均数,一步到位  

16. 字符串分组

s = "abcdef"  
grouped = [s[i:i+2] for i in range(0, len(s), 2)]  # 每两个一组,分割有道  
  • 应用:适用于任何需要分组的场景。

17. 数据标准化

import numpy as np  
data = np.array([1, 2, 3])  
normalized_data = (data - data.mean()) / data.std()  # 数学之美,标准分布  
  • 背景:数据分析必备,让数据符合标准正态分布。

18. 数据过滤(基于条件)

data = [1, 2, 3, 4, 5]  
even_numbers = [x for x in data if x % 2 == 0]  # 只留偶数,排除异己  
  • 技巧:列表推导结合条件判断,高效筛选。

进阶实践与技巧

既然你已经掌握了基础的十八种方法,接下来让我们深入一些,探讨如何将这些技巧结合起来,解决更复杂的数据清洗问题,并分享一些实战中的小技巧。

1. 复杂字符串处理:正则表达式

正则表达式是数据清洗中不可或缺的工具,虽然严格来说可能超过一行,但它能高效地处理模式匹配和替换。

import re  
text = "Email: example@email.com Phone: 123-456-7890"  
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)  
phones = re.findall(r'\b\d{3}-\d{3}-\d{4}\b', text)  

这段代码分别提取了文本中的电子邮件和电话号码,展示了正则表达式的强大。

2. Pandas库的魔法

对于数据分析和清洗,Pandas是不二之选。虽然Pandas的命令通常不止一行,但其高效性和简洁性值得学习。

iChina编程mport pandas as pd  
df = pd.read_csv('data.cihEsBzeSsv')  
# 删除含有缺失值的行  
df_clean = df.dropna()  
# 替换特定值  
df['column_name'] = df['column_name'].replace('old_value', 'new_value')  
  • 注意:Pandas虽然强大,但对于初学者可能需要更多时间来熟悉。

3. 错误处理和日志记录

在处理大量数据时,错误几乎是不可避免的。学会用try-except结构捕获异常,并使用logging记录日志,可以大大提升调试效率。

import logging  
logging.basicConfig(level=logging.INFO)  
try:  
    result = some_function_that_might_fail()  
    logging.info(f"成功执行!结果:{re编程sult}")  
except Exception as e:  
    logging.error(f"执行失败:{e}")  

这样,即使出现问题,也能迅速定位。

4. 批量操作与函数封装

将常用的数据清洗步骤封装成函数,可以大大提高代码的复用性和可读性。python

def clean_phone(phone):  
    """移除电话号码中的非数字字符"""  
    return ''.join(c for c in phone if c.isdigit())  
  
phone_numbers = ['123-456-7890', '(555) 555-5555']  
cleaned_numbers = [clean_phone(phone) for phone in phone_numbers]  

通过定义clean_phone函数,我们可以轻松地清理一批电话号码。

实战建议:

  • 分步进行:不要试图一次性完成所有清洗任务,分步骤处理,逐步优化

  • 测试数据:在实际数据上测试你的清洗逻辑前,先用小样本或模拟数据验证代码的正确性。

  • 文档和注释:即使是简单的数据清洗脚本,良好的注释也能为未来的自己或其他开发者提供巨大帮助。

到此这篇关于Python实现数据清洗的18种方法的文章就介绍到这了,更多相关Python 数据清洗内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python实现数据清洗的18种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153125

相关文章

redis防止短信恶意调用的实现

《redis防止短信恶意调用的实现》本文主要介绍了在场景登录或注册接口中使用短信验证码时遇到的恶意调用问题,并通过使用Redis分布式锁来解决,具有一定的参考价值,感兴趣的可以了解一下... 目录1.场景2.排查3.解决方案3.1 Redis锁实现3.2 方法调用1.场景登录或注册接口中,使用短信验证码场

C#从XmlDocument提取完整字符串的方法

《C#从XmlDocument提取完整字符串的方法》文章介绍了两种生成格式化XML字符串的方法,方法一使用`XmlDocument`的`OuterXml`属性,但输出的XML字符串不带格式,可读性差,... 方法1:通过XMLDocument的OuterXml属性,见XmlDocument类该方法获得的xm

10个Python Excel自动化脚本分享

《10个PythonExcel自动化脚本分享》在数据处理和分析的过程中,Excel文件是我们日常工作中常见的格式,本文将分享10个实用的Excel自动化脚本,希望可以帮助大家更轻松地掌握这些技能... 目录1. Excel单元格批量填充2. 设置行高与列宽3. 根据条件删除行4. 创建新的Excel工作表5

Redis 多规则限流和防重复提交方案实现小结

《Redis多规则限流和防重复提交方案实现小结》本文主要介绍了Redis多规则限流和防重复提交方案实现小结,包括使用String结构和Zset结构来记录用户IP的访问次数,具有一定的参考价值,感兴趣... 目录一:使用 String 结构记录固定时间段内某用户 IP 访问某接口的次数二:使用 Zset 进行

C#多线程编程中导致死锁的常见陷阱和避免方法

《C#多线程编程中导致死锁的常见陷阱和避免方法》在C#多线程编程中,死锁(Deadlock)是一种常见的、令人头疼的错误,死锁通常发生在多个线程试图获取多个资源的锁时,导致相互等待对方释放资源,最终形... 目录引言1. 什么是死锁?死锁的典型条件:2. 导致死锁的常见原因2.1 锁的顺序问题错误示例:不同

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

使用PyQt实现简易文本编辑器

《使用PyQt实现简易文本编辑器》这篇文章主要为大家详细介绍了如何使用PyQt5框架构建一个简单的文本编辑器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录分析主窗口类 (MyWindow)菜单操作语法高亮 (SyntaxHighlighter)运行程序主要组件代码图示分析实现

查询Oracle数据库表是否被锁的实现方式

《查询Oracle数据库表是否被锁的实现方式》本文介绍了查询Oracle数据库表是否被锁的方法,包括查询锁表的会话、人员信息,根据object_id查询表名,以及根据会话ID查询和停止本地进程,同时,... 目录查询oracle数据库表是否被锁1、查询锁表的会话、人员等信息2、根据 object_id查询被

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚